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ABSTRACT 
Jacquet modules of a reducible parabolically induced representation of a 
reductive p-adic group reduce in a way consistent with the transitivity 

of Jacquet modules. This fact can be used for proving irreducibility of 
parabolically induced representations. Classical groups are particularly 
convenient for application of this method, since we have very good infor- 
mation about  part  of the representation theory of their Levi subgroups 
(general linear groups are factors of Levi subgroups, and therefore we can 

apply the Bernstein-Zelevinsky theory). In the paper, we apply this type 
of approach to the problem of determining reducibility of parabolically in- 

duced representations of p-adic Sp(n) and SO(2n + 1). We present also 
a method for getting Langlands parameters of irreducible subquotients. 

In general, we describe reducibility of certain generalized principal series 
(and some other interesting parabolically induced representations) in terms 
of the reducibility in the cuspidal case. When the cuspidal reducibility is 
known, we get explicit answers (for example, for representat~ns supported 
in the minimal parabolic subgroups, the cuspidal reducibility is well-known 
rank one reducibility). 

Introduction 

Reducibility of parabolically induced representations plays an important role 

in a number of problems of representation theory of reductive groups (among 

others, in classifying irreducible square integrable, tempered and unitary repre- 

sentations). If a parabolically induced representation of a reductive p-adic group 

reduces, then all Jacquet modules reduce. They reduce in a way compatible with 

the transitivity of Jacquet modules. Using this simple observation, one gets a 
possibility of proving irreducibility of parabolically induced representations. To 

Received March 14, 1995 and in revised form February 12, 1997 

29 



30 M. TADIC Isr. J. Math. 

be able to apply this approach to irreducibility of the parabolic induction, one 

needs to have some information about Jacquet modules of parabolically induced 

representations. A general result and formula about their composition series is 

provided by a result of J. Bernstein and A. V. Zelevinsky, and W. Casselman. 

Classical groups are particularly convenient for application of this method, 

since we have rather good information about part of the representation theory 

of their Levi subgroups, namely, general linear groups are factors of their Levi 

subgroups. This enables us to apply the Bernstein-Zelevinsky theory to repre- 

sentations of Levi subgroups. 

In this paper, we apply the above approach to the problem of determining re- 

ducibility of parabolically induced representations of Sp(n, F) and SO(2n + 1, F)  

(F  is a non-archimedean local field, char F r 2). Also we show how to identify the 

irreducible subquotients. We show how reducibility of certain generalized princi- 

pal series (and some other interesting parabolically induced representations) can 

be reduced to the reducibility in the cuspidal case. When the cuspidal reducibility 

is known, we get explicit answers (see the end of the introduction for an account 

of these explicit results, as well as the eleventh section; if the representations are 

supported in the minimal parabolic subgroups, then the cuspidal reducibility is 

well-known rank one reducibility, which has been known for decades). 

A very satisfactory theory of reducibility for general linear groups was created 

by Bernstein and Zelevinsky ([Z]). A number of cuspidal reducibilities for other 
classical groups have been determined recently by F. Shahidi. Our paper is not 

directed to cuspidal reducibilities (although in the tenth section it is shown how 

one can get them in some simple situations, which include some new cases). 

A method for determining reducibility based on Jacquet modules has been 

already applied in a number of papers (IT4], [J1], [SAT], [J2], [J3] among others). 

The problem with this method is that  there exist points when the method, in its 

simplest form, cannot decide the reducibility. There are very few such points, but 

they exist. I shall call them delicate cases (one can give them a precise definition, 

but we shall not do so in this paper). In this paper we show how one can also 
use the method in such situations. 

We shall denote by Sn either the group Sp(n, F)  or SO(2n + 1, F).  Take a 

maximal parabolic subgroup P --- M N  of Sn. Then the Levi factor M is iso- 

morphic to GL(k, F) x S,~-k. An irreducible admissible representation ~r of M 

can be decomposed as T | a. By ~" ~ a we denote the parabolically induced 

representation from ~- | a. We consider in this paper reducibility of ~" >4 a when 

~- is any twist by a (not necessarily unitary) character of a generalized Stein- 



Vo1. 107, 1998 ON REDUCIBILITY OF PARABOLIC INDUCTION 31 

berg representation of a general linear group and a is an irreducible cuspidal 

representation, or conversely. We are also interested in the situation when T or 

a are representations which have the opposite asymptotic properties of general- 

ized Steinberg representations (in the case of general linear groups, these are the 

segment representations of Zelevinsky). 

To get explicit information from the Bernstein-Zelevinsky and Casselman re- 

sult about composition series of Jacquet modules of given parabolically induced 

representation(s), requires certain calculation (mainly in the Weyl groups). These 

calculations were done in [T6] for classical groups Sp(n) and SO(2n + 1). There 

we have constructed a structure which provides us with a simple combinatorial 

algorithm for calculation of these composition series. To avoid repetition of the 

calculation done in IT6], we apply that structure for calculation of composition 

series. 

The first section recalls briefly the notation and results regarding general linear 

groups that  we use in this paper. In the second section we present the notation 

for groups Sp(n, F) and SO(2n + 1, F). The third section gives simple criteria 

for determining reducibility and irreducibility of parabolically induced represen- 

tations. These criteria apply to any connected reductive group over F. They are 

very simple. Therefore, we did not consider it necessary to state them explicitly 

in the first version of this paper (preprint On reducibility of parabolic induction 
in Mathematica Goettingensis, No. 19, 1993). In the fourth section we deal with 

reducibility of T ~ a when a is cuspidal and when we are in the unitary situation 

(which means that  T is an irreducible square integrable representation of a gen- 

eral linear group). We consider in this section the case when involved cuspidal 

representations have generic reducibilities (we shall say shorter, in the case of 

generic cuspidal reducibilities). For the definition of generic cuspidal reducibility 

see the beginning of the fourth section. In this situation there are no delicate 

cases. These results give alternative proofs of some implications of Shahidi's 

paper [Sh2], from cuspidal reducibilities to square integrable reducibilities. They 

also give some new cases not covered by Shahidi's results, and an alternative 

proof that  the duality in the cuspidal case implies the duality in the square inte- 

gab le  case ([Sh2]). Sha.hidi's proof is based on analysis of L-functions. Using the 

results of the tenth section, from the fourth section we can get new reducibility 

results in the positive characteristic. 

The fifth section treats one delicate case when T is cuspidal. The first case when 

such a situation occurs is Sp(2, F)  (the representation is unramified). This case 

was  settled by F. Rodier using Macdonald's explicit formulas for zonal spherical 
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functions, and also by C. Jantzen using the Hecke algebra method. Both methods 

are based on the fact that one is dealing with a very simple and well understood 

inducing representation. Our method is based on the type of cuspidal reducibility, 

and therefore applies everywhere where we have this type of cuspidal reducibility. 

The sixth section settles one delicate case when a is cuspidal. In the seventh and 

eighth sections we treat our most general cases of reducibility of ~- ~ a when T is 

cuspidal, in the setting of generic cuspidal reducibilities. In the seventh section 

there is a situation when we need the delicate case which was treated in the fifth 

section (no new delicate cases appear here). We also give a complete description 

of Langlands parameters of the irreducible subquotients. In the ninth section we 

treat our most general case when a is cuspidal (we do not have new delicate cases 

here). 

In the tenth section we show how to treat some simple cuspidal reducibilities. 

The eleventh section is the most interesting one, particularly if one wants to 

see applications and the power of the method that we have developed in this 

paper. We write down some of the most interesting concrete consequences of 

the general results that we proved in preceding sections. Theorems 11.1 and 

11.2 describe reducibility points of the degenerate principal series and general- 

ized principal representations X ~ 1Sp(n,F), X :~ Stsp(n,F), X :~ 1SO(2n+I,F) and 

X )~ Stso(2n+l,f) when X is any character of F • (Langlands parameters of irre- 

ducible subquotients are obtained in the seventh and eighth sections). To give an 

idea of these reducibility results, we shall recall here the reducibility points from 

Theorem 11.1 for the first two representations: we have reducibility of X ~ 1Sp(n,F) 

( o r  X :~ Stsp(n,F)) if and only if X 2 = 1F• or X ---- V J = ( n + l ) l F  • ( s ee  the first two 

sections for notation). Theorem 11.2 contains a similar description of reducibil- 

ities for the other two representations. Further, in Theorems 11.3 and 11.4 we 

describe the reducibility points of the degenerate principal series and generalized 

principal series representations X1GL(n ,F)  :~ 1 and XStGL(n,p) :~ 1, both of Sp(n, F)  

and SO(2n + 1 ,F)  (for S 0 ( 2 n +  1,F)  we assume char F = 0, because we use one 

result of D. Goldberg). 

At this point, let us note that  some of the reducibilities of the degenerate 

principal series were settled before this paper. The case of X1GL(n,F) :~ 1 for 

Sp(n, F)  is the topic of [Gu] and [KuRa]. S. Kudla and S. Rallis describe also 

irreducible subquotients (even in this case, our result is not completely covered by 

theirs, since we do not assume char F -- 0, but only char F ~ 2). Reducibilities 

of degenerate principal series representations considered in the above theorems 

were obtained by C. Jantzen in regular and in low rank cases ([J1] and [J2], ranks 
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two and three, char F -- 0; he also described the irreducible subquotients in such 

situations). Using the methods of this paper and continuing from the results that 

we have obtained here, C. Jantzen obtained in a recent paper [J3] (among others) 
reducibility points and irreducible subquotients of all degenerate principal series 

of groups Sp(n, F) and SO(2n + 1, F) which are induced from maximal parabolic 

subgroups (no new delicate cases show up here). 

Each irreducible square integrable representation 5 of a general linear group is 

isomorphic to the unique irreducible square integrable subquotient of 
l } - ( r n - 1 ) / 2 p  X lY - - (m-1) /2+lp  X "'" X ll(m-1)/2p where p is an irreducible unita- 

rizable cuspidal representation of some GL(p, F) (see the first section for no- 

tation). Then we shall write 5 ~ 5(p, m). Each irreducible essentially square 

integrable representation of a general linear group is of the form u'~5(p, m) for 

some c~ C R, m and p as above. Assume char F = 0. Let p be odd and 

greater than 1. Theorems 11.6 and 11.8 say that the representation yah(p, m) >~ 1 

of Sp(mp, F) (resp. SO(2mp + 1, F)) reduces if and only if p ~ /~ and a E 

{ ( -m  + 1 ) /2 , ( -m  + 1)/2 + 1 , ( - m +  1)/2 + 2 , . . . , ( m -  1)/2} (resp. p ~/5 and 

e {-m/2, -m/2 + 1, - m / 2 + 2 , . . . ,  m/2}). The case p = 1 is covered by Theo- 

rems 11.3 and 11.4. In particular, these reducibility criteria completely determine 

the reducibility points of the representations 5 • 1 of Sp(e, F) and SO(2~ + 1, F) 

when t is odd and 5 is any irreducible essentially square integrable representation 

of GL(g, F) (Corollaries 11.7 and 11.9). Similar results hold for the segment repre- 
sentations of Zelevinsky. We also describe when we have reducibility for the repre- 

sentations u~5(p, m) ~ 1 of Sp(2m, F) and SO(4m+l, F), where p is an irreducible 
cuspidal representation of GL(2, F) (Theorems 11.10 and 11.11). At the end, we 

describe in Theorem 11.13 reducibilities of XIGL(n,F) >~ a and xStGL(n,F) ~ O" 
where a is any irreducible cuspidal representation of Sp(1, F) = SL(2, F) Cone 

can describe such reducibilities for SO(2n+ 1, F)-groups also). For the last result 
we only assume char F r 2. There are also other possible applications. 

It is interesting to note that the method presented in this paper gives all 
reducibility points of the representations v~5(p, m) ~ 1 of Sp(pm, F) when p is 

an irreducible unitarizable cuspidal representation of Sp(p, F) with a non-trivial 

central character, and a E •. We do not need to assume char F = 0, since 
we do not use Shahidi's results in the proofs (the simple cuspidal reducibilities 

considered in the tenth section are enough for this). 

F. Shahidi proved in [Sh2] a duality between parabolic inductions in the case of 

the groups Sp(n,F) and SO(2n + 1,F), when one is inducing (unitary) 

irreducible square integrable representations of GL(n, F) (char F = 0). In the 
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twelfth section we show how this duality can be extended (in a suitable form) to 

the non-unitary case (Theorem 12.1). More precisely, we make a partition of the 

set of all (classes of) irreducible essentially square integrable representations of 

GL(n, F), say into X and Y. Then for r E X both parabolically induced repre- 

sentations ~r~ 1, of Sp(n, F)  and SO(2n + 1), are irreducible. On Y we have a 

duality; one representation is reducible if and only if the other one is irreducible. 

The set of all unitarizable classes in Y is exactly the set of all selfcontragredient 

irreducible square integrable representations of GL(n, F).  This is the place where 

Shahidi showed the duality (one needs to assume n > 2 in this case). 

In the thirteenth section we consider reducibilities of some generalized principal 

series representations in the case of non-generic cuspidal reducibilities. First we 

consider in this section reducibility problems similar to those of the seventh and 

eighth sections. In the case of non-generic cuspidal reducibilities, there exist 

square integrable representations of a new type, closer to the Zelevinsky segment 

representations than to the square integrable representations of general linear 

groups (see Lemma 7.1 of [TT]; Jacquet modules of that representations may have 

on GL-factors Zelevinsky segment representations). We find reducibility points 

of representations parabolically induced from such representations, tensored with 

a cuspidal representation of a general linear group ((iii) of Proposition 13.1). 

Lemma 13.3 deals with the reducibility of a representation parabolically induced 

by an even more unusual square integrable representation than the above ones 

(Jacquet modules of this square integrable representation are not irreducible). 

Theorem 13.2 describes the reducibility points of representations considered in 

the ninth section, in the case of non-generic cuspidal reducibilities. Note that  

our method applies to the setting of these new cuspidal reducibilities without 

essential changes. 
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of non-generic cuspidal reducibilities. 

1. G e n e r a l  l inear  g r o u p s  

We shall use standard notation of the representation theory of p-adic general 

linear groups. This notation is introduced mainly in [Z]. We shall briefly recall 

that notation. For more details and for proofs of the facts that we shall present 

in this section, one should consult [Z], and also [Ro2]. 

Fix a local non-archimedean field F. We shall assume that the characteristic 

of F is different from two. The modulus of F is denoted by ] IF. The character 

[det( )IF of GL(n, F) is denoted by v. We fix a minimal parabolic subgroup Pma~ 

of GL(n, F) consisting of all upper triangular matrices in GL(n, F). Parabolic 

subgroups of GL(n, F) that contain Pm cL will be called standard parabolic sub- 

groups. 

For Pi x Pi matrices Xi, i = 1 , . . . ,k ,  the quasi-diagonal (P l  -~- " ' "  -~-Pk) X 
(Pl + "'" + Pk) matrix which has on the quasi-diagonal the matrices X1, . . . ,  Xk 

is denoted by q-diag (X1, . . . ,  Xk). 
Let a = (n l , . . . ,  nk) be an ordered partition of n. Denote 

M2 L = {q-diag(Xl,. . . ,  Zk), Xi e GL(ni, F)}, 

p•L = MgLPCmL" 

The unipotent radical of p~L will be denoted by N GL. We identify M y  a with 

GL(nl, F) x --. x GL(nk, F) in an obvious way. 

For admissible representations Iri of GL(ni, F), 

7r 1 X 71" 2 

denotes the representation of GL(nl + n2, F) which is parabolically induced by 
lrl | 7r2 from p G L  - -  M GL N GL If additionally 7r 3 is an admissible ( ~ 1 , ~ 2 ) -  (~1,~2) (,~1,~)" 
representation of GL(n3, F), then 

(1.1) 

For a reductive group G over F, denote by 9~(G) the Grothendieck group of the 
category of all admissible representations of G of finite length. There is a natural 

mapping from the objects of the category to ~R(G). We call this mapping semi 

simplification, and denote it by s.s. The image of s.s. determines a cone in ~R(G). 

In this way we get a natural partial order _< on fR(G). In this paper we shall 
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keep the following convention: when we write 71-1 ~ 71" 2 for two representations 

of G of finite length, it will mean the inequality between semi simplifications 

s.s.(Trl) < s.s.(r2). Further, for each finite set r l , . . .  ,~k in ff~(G), there exists 

inf(Trl, . . . ,  ~rk) (the highest lower bound). 

Set Rn = 9~(GL(n, F))  and R = (~>o  R,~. One lifts in a natural way the 

multiplication which we have defined above, to a multiplication • on R. The 

induced mapping from R | R to R is denoted by m. In this way R becomes a 

commutative (associative) ring with identity. 

Let c~ = ( h i , . . . ,  nk) be an ordered partition of n and let ~ be an admissible 

representation of GL(n, F)  of finite length. The (normalized) Jacquet module 

of 7r with respect to the parabolic subgroup pGL will be denoted by r~(~r). We 

shall consider s.s.(r~(Tr E Rnl |  | Rnk in a natural way. Define 

m * ( . )  = e R | R. 
k = 0  

One lifts m* Z-linearly to a mapping from R to R| With such comultiplication 

R is a Hopf algebra (see [Z]). 

Take an admissible representation u of GL(n, F).  Suppose that  r is a sub- 

quotient of Pl • P2 x . . .  • Pk where Pi are irreducible cuspidal representations of 

general linear groups. Then the multiset (Px, P2, �9 �9 �9 Pk) will be called the support 

of r .  If additionally we have an admissible representation a of a reductive group 

G over F,  then ~r| is a representation of GL(n, F)  • G and we define GL-support 

of r | a to be the support of ~, i.e., (Pl ,P2, . . .  ,Pk). 
The support of an irreducible representation r of GL(n, F)  always exists (it is 

uniquely determined, see [Z]). Further, if some irreducible subquotient 

p~ |  @ p~, of some r~(~r) is cuspidal, then 

(p~,...,P~,) 

is the support of 7r. 

Let p be an irreducible cuspidal representation of a general linear group and let 

n be a non-negative integer. The set [p, vnp] = {p, up, ~2p, . . . ,  vnp} is called a 

segment of cuspidal representations of general linear groups. The representation 

vnp • vn - lp  • . ' .  • vp • p has a unique irreducible subrepresentation which 

we denote by 5([p, yap]), and a unique irreducible quotient which we denote by 

s([p, vnp]) (Zelevinsky segment representation). Thus 

(1.2) 5([p, vnp]) '-+ ~np x v'~-lp x . . .  • vp • p ~ s([p, vnp]). 
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If k > g, we take formally [~kp, vtp] = ~. We take 5(0) = 4(0) to be the identity 

of R. We have 

n 

(1.3) m*(5([p, vnp])) = E 5([~'k+lP' v'~P]) | 5([P' vkP])' 
k = - i  

(1.4) m*(s([P'L"~P])) = E s([P'~'kP])| 
k = - I  

([Z]). Suppose that  p is a representation of GL(p,F).  Denote (p ,p , . . .  ,p) E Z t 
by (p)t. Then 

(1.5) 

(1.6) 

r(p)~+l(5([p, vnp]))  = pnp | pn-lp |  | vp | p, 

r(p)n+,(5([p, vnp])) = p@ l]p| "." @ l ] n - l p ~  l/np. 

~(a)  = 5(Ar • 5 (Ar • . . .  x ~(Ar 

r  = s (Ar x s(Ar •  x S(Ar 

The representations on the right hand side in the above two formulas also char- 

acterize representations 5([p, vnp]) and s([p, vnp]) as irreducible subquotients of 

v~p • vn- lp  • .-. • ~p • p, which have them for subquotients of corresponding 

Jacquet modules. The set of all segments of cuspidal representations of general 

linear groups will be denoted by S. 

For an irreducible essentially square integrable representation 5 of GL(m, F), 

one can find a unique e(5) E ~ such that  v-~(~)5 is unitarizable. Set 5 ~ = 

~-e(~)5. Then 5 = ~(~)5 ~, where e(5) E ~ and 5 ~ is unitarizable.. We denote 

by D the set of all equivalence classes of irreducible essentially square integrable 

representations of GL(m,F) ' s  for all m > 1. Let d = (51,. . . ,5k) E M(D),  

where M(D) denotes the set of all finite multisets in D. Choose a permutation 

of the set {1 ,2 , . . . , k}  such that e(5r ) > e(5~(2)) ~ . . .  ~ e(5r The 

representation 5~(1) • 5~(2) • ' "  • 5~(k) has a unique irreducible quotient, which 

we denote by L(d). Then d ~-+ L(d) is the Langlands classification for general 

linear groups. We shall write L(d) = L((51, . . . ,  5k)) simply as L(51,... ,  5k). Note 
that s([p, v~p]) = L(p, vp, v2p,. . . ,  v'p).  

We shall now describe the Langlands classification in a slightly different way. 

We shall also describe the parameterization introduced by A. V. Zelevinsky in [Z]. 

Denote by M(S) the set of all finite multisets in 8. Let a = (A1, . . .  Ak) E M(S). 
Choose a permutation ~ of {1 ,2 , . . . ,  k} such that e(5(A~0)) ) > e(5(A~(2))) > 

�9 .. >_ e(5(A~(k))). Introduce representations 
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The representation A(a) (resp. ~(a)) has a unique irreducible quotient (resp. a 
unique irreducible subrepresentation) which we denote by L(a) (resp. Z(a)). We 

shall often denote L(iAt . . . .  Ak)) (resp. Zi(A~,. . .  Ak))) simply by LiAI , . . .  Ak) 
(resp. Z(A1,. . .  Ak) ). 

Let a = (A1,...  Ak) E M(S). Suppose that there exist 1 _< i < j < k so that 
Ai U Aj E 8 and A~ U Aj ~ {A~, Aj}. Define 

a '  = iA1 . . . .  , A i _ I , A  i U A j , A I . t _ I , . . . , A j _ I , A  i n A j , A j + l , . . .  ,Ak)  

(if Ai n Aj = 0, then we omit A~ n Ay in the above definition of a~). Then we 
shall write 

a ~ -~a. 

Generate by -~ a partial order _< on M($). Then we have the following theorem 

from the Bernstein-Zelevinsky theory (for the Langlands classification apply the 
Zelevinsky involution). 

1.1. THEOREM: Let a, b E M(,_q). 
(i) n(b) (resp. Z(b)) is a subquotient of A(a) (resp. ((a)), if and only ifb < a. 

(ii) The multiplicity ofL(a) (resp. Z(a)) in A(a)(resp. ((a)) is one. 
(iii) If  b < a and if b is minimal in M(S), then the multiplicity of L(b) (resp. 

Z(b)) in )~(a) (resp. ((a)) is one. 

We shall use often the following fact: if L(b) (resp. Z(b)) is a subquotient of 
A(a) (resp. r then 

(1.7) supp L(a) = supp Lib ) 

(note that suppLia ) =suppZia ) and supp Lib ) = supp Zib)). 

1.2. Remark: Let A E S. Then 5(A ) = L(A). Therefore we could work 
only with notation L(A) as F. Rodier did in [Ro2]. For our purposes we find 

this confusing in some situations and this is the reason that we have separate 

notation for L(A) (another reason is the importance of these representations). A 
similar situation applies to representations ~(A) = Z(A). 

2. Groups  Sp(n, F) and  SO(2n + 1) 

We shall briefly recall in this section the notation for classical groups SPin , F) and 

SO(2n+ 1) introduced in [T5] and IT6] (see these two papers for more details and 
proofs). For a (square) matrix g denote by tg (resp. 0g) the transposed matrix 
of g (resp. the transposed matrix of g with respect to the second diagonal). 
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Denote by J~ the n x n matrix having l 's on the second diagonal and all other 

entries 0. The identity n x n matrix is denoted by Is. Set 

where S is a 2n x 2n matrix. The group Sp(n, F) is the group of all 2n x 2n 

matrices over F which satisfy t S S  = I2~. We take Sp(0, F) to be the trivial 

group. 

The group SO(2n + 1,F) is the group of all (2n + 1) x (2n + 1) matrices X 

over F of determinant one, which satisfy ~  -- I2n+1. 

In the sequel, we denote by S,~ either the group Sp(n, F) or SO(2n+ 1, F).  We 

fix the minimal parabolic subgroup Pmi, in S~ consisting of all upper triangular 

matrices in the group. Parabolic subgroups of Sn that contain Pmin we shall call 

standard parabolic subgroups. 

Let a --- ( n l , . . . , n k )  be an ordered partition of some non-negative integer 

m < n into positive integers. If m = 0, then the only partition of 0 (empty 

partition) will be denoted by (0). Set 

Ma = {q-diag(gl, ,gk,h, 0 -1 . . ,  "'" gk ," Og11;g~ � 9 1 4 9  S ,~ -m} .  

Then P~ = M~Pmin is a standard parabolic subgroup of S,,. The unipotent rad- 

ical of P~ is denoted by N,~. We identify M~ with GL(nl,  F) • . . .  • GL(nk, F) x 

S~-m in an obvious way: 

q-diag(gl, . ,gk ,  h, eg-1,  �9 " k . . . ,  eg~1) ~_~ ( g l , . . . , g a ,  h). 

Let r be an admissible representation of GL(m, F) and let a be an admissible 
representation of S,~. We denote by 

7r )4 o" 

the representation of Sm+~ parabolically induced from P(m) by ~r | a. Here 

lr |  maps q-diag (g, h, eg-1) �9 M(,q to lr(g) |  Denote the contragredient 

representation of ~- by ~. The following proposition only expresses well-known 

facts about parabolic induction in terms of our notation. 

2 .1 .  PROPOSITION:  For admissible representations ~r,~rl, 7r2 of genera/ linear 

groups and for an admissible representation a of  Sm we have Irl >4 (7r2 >~ a) -~ 
(71" 1 X 71"2) )4 O', a n d  (Tr >4 (7) ~ ~ ~" >4 ~. 

Proof'. Proposition 4.1 of [T5] (see the proof of that proposition) and Proposition 

6.1 of [T6] imply the proposition. | 
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Set / ~ ( S )  = ff{(Sn) and R(S)  = ~ > o  R~(S).  Lift the multiplication >4 to a 

multiplication >~: R • R(S)  --4 R(S)  in the usual way. Denote the contragredient 

involution on R and R(S)  by ~ 

Again the following proposition expresses well-known facts in terms of our no- 

tation (it follows from a well-known fact about parabolic induction from associate 

representations and the fact that lr |  and ~ |  are associate, which follows from 

Theorem 2. of [GfKa]). As the referee noted, the proposition follows also from 

the commutativity of parabolic induction and taking contragredients, and the 

description of the contragredient representations of classical groups in [MgVW]. 

2.2. PROPOSITION: For zr 6 R and a E R(S)  we have the equality 7r >~ a = ~r x a 

in R(S)  (i.e. the equality holds in the Grothendieck groups). 

Proof'. Proposition 4.2 of [Th] and Proposition 6.2 of [T6]. II 

Let a be an admissible representation of Sn and let a = ( n l , . . . , n k )  

be an ordered partition of 0 <_ m <_ n. The Jacquet module of a for P~ is 

denoted by s~(a). If a has a finite length, then we shall consider s.s.(s~(a)) 6 

R,,, |  | | m,_,n(S). 
Let 7ri be admissible representations of GL(ni, F) for i = 1, 2 , . . . ,  k, let T be a 

similar representation of S a and let ~r be a similar representation of Sn, +...+nk +q. 

Denote a = ( n l , . . . ,  nk). Then Erobenius reciprocity in this setting implies 

(F-R) Homs.,+...+.~+q(a, zrl x - . .  x 7r k >~ r)  ~ HomM. (sa(a),  1rl | 174  | 

We now introduce a Z-linear mapping #*: R(S)  ~ R | R(S) ,  which is defined 

on the basis of irreducible admissible representations by 

n 

= 

k=0 

Consider R | R(S )  as an R | R-module in an obvious way: 

i j i j 

Denote by a: R | R -+ R | R the mapping defined by a(Y~ i xi | Yi) = ~-~4 Yi | xi. 

2.3.  THEOREM: Set M* = (m | 1) o (,,~ |  o ~; o m * .  Then for 7r 6 R and 

a 6 R(S) we have 

#*(~r >~ a) = M ' ( r )  >~ #*(a). 

Proof'. Theorems 5.4 and 6.5 of [T6]. II 
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Let ~r be an admissible representation of GL(p, F) of finite length and let a be 

a cuspidal representation of Sq of finite length. If T is a subquotient of lr >4 a, 

then we define 

sGL(7) 
to be S(p)(7). The above Jacquet module will be called the Jacquet module of 

GL-type. This Jacquet module is particularly interesting for us because it has 

the following property: S.s.(SGL(7)) = r | a for some r E Rp, r > 0 (one can 

easily deduce it from the above theorem, since #* (a) = 1 | a). 

Set D+ = {6 E D; e(6) > 0}. Let T(S)  be the set of all equivalence classes of 

irreducible admissible tempered representations of Sn's for all n >_ 0. Take t = 

((61, . . . ,  6~), 7) E M(D+)  x T (S )  (M(D+) denotes the set of all finite multisets 

in D+). Choose a permutation ~ of the set {1 ,2 , . . . , n}  such that  e(6~(1)) >_ 

e(6~(2)) > " .  > e(6~(=)). The representation 6~(1) x 6e(2) x . . .  x 6r >4 z has 

a unique irreducible quotient which we denote by L(t). This is the Langlands 

classification for groups Sin. We shall write L(t) = L(((61, . . . ,  ~n), 7)) simply as 

L((61, . . . ,  6n), 7) or L(61, . . . ,  6n, ~-). 

2.4. PROPOSITION: Let p be an irreducible unitarizable cuspidal representation 

of the group GL(p, F)  and let a be a similar representation of Sin. Suppose that 

nap >4 a reduces for some a > 0. Then: 

(i) p ~ ~ (we shall say that p is selfcontragredient). 

(ii) The representation u~+"p x u~+n-lp x . . .  x va+lp x u~p >~ a, n >_ O, has a 

unique irreducible subrepresentation which we denote by 6([ua p, v~'+'~p], a). 

We have 

(2.1) 

o))  = 
k = - I  

(iii) 

(we take formally 6(0, a) = a). The representation 6([t,~p, ua+np], a) is 

square integrable and we have 6([u(~p, u~+'~p], a)- ~ 6([u~p, u~'+'~p], 5). 
The representation u~+'~p x u~+'~-lp x . . .  x uc'+lp • vCtp >4 0", rt > O, ha8 

a unique irreducible quotient which we denote by s([u~p, u~'+"p], a). We 

have 

(2.2) 

o))  = | s ( [ , / ' p ,  " " + % 1 ,  o)  
k=--I 

(we take formally ~(0, a) = a). Clearly, 

o) = o). 
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The  representat ion s([z~p, Va+np], a) can be characterized as a unique ir- 

reducible subquot ien t  ~r o f  t,~+'~p x t,~+'~-l p x . . .  x v~+l p x z~ap >~ a which 

satisfies 

(2.3) v-~- '~p | v - ~ - ( ~ - l ) p  | . . .  | v - ~ - l p  | v - ap  @ a _< s(p)n+l (~r). 

Fhrthermore ,  for ~r = s([v~p, zt~+~p], a) we have in (2.3) an equality. 

Proof." The proof of (i) can be found in several places (for example [Sh2]). Proofs 

of (ii) and (iii) are very similar. The complete proof of (ii) can be found in [TT]. 

Applying the generalized Zelevinsky involution ([Au], [B] or [SnSt]), one gets 

(iii). | 

The Steinberg representation of a connected reductive group (7 over F is de- 

fined in [C1]. We shall denote this representation by StG. The trivial represen- 

tation of G will be denoted by 1G, while the trivial representation of the trivial 

group will be denoted simply by 1. Now a simple computation of the modular 

characters of the minimal parabolic subgroups implies the following: 

2.5. PROPOSITION: 
(i) Stsp(,~,g) = 5([vlgx, V"IF• 1), Stso(2,~+l,F) = (~([tP/21g • , Vn-1/21F• 1). 

(ii) 1Sp(,~,g ) = S([VlF• V'~IF• 1), ISO(2~+I,F) = S([Vl /Z lF•  , V'~-1/21F• 1). 

A. V. Zelevinsky defined involution lr ~ ~r t on representations of general linear 
groups over F ([Z]). A generalization of this involution on irreducible represen- 

tations of reductive groups is constructed in [Au], [B] and [SnSt]. This general- 
ization is called the generalized Zelevinsky involution (we shall use in this paper 

a generalization from [Au]). 

3. S o m e  general  arguments  for reducibi l i ty  and irreducibi l i ty  of  
representat ions  

In this section G will denote a connected reductive group over F.  We fix a max- 

imal split torus A in G and a minimal parabolic subgroup Pmln in G containing 

A. Let E be the set of all (reduced) roots of G relative to A (see [C2] for more 

details regarding notation that we use in this section). The minimal parabolic 

subgroup Pmin determines the basis A of E. For O C_ A let Po be the corre- 

sponding stahdard parabolic subgroup. The unipotent radical of Po  is denoted 

by No.  Denote by Ao the connected component of ~ e o  Ker(fl) and denote by 
M e  the centralizer of Ao in G. Then Po = M o N o  is a Levi decomposition of 

Po. 
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All parabolic subgroups that we consider in this section will be assumed to be 

standard with respect to Brain (i.e., to contain P~in). All Levi decompositions of 

parabolic subgroups will be assumed to be of the type described above. 
For a parabolic subgroup P = M N  and an admissible representation ~r of G, 

the Jacquet module of 7r with respect to P will be denoted by raM(~r) (with one 
exception, this notation will be used only in this section). We can lift ram to a 

homomorphism 9~(G) ~ 9~(M), which we denote also by raM . Note that this 

homomorphism is positive: if 7r > 0, then raM(~) > 0. This implies that ram is 
monotone: if 1rl < 1r2, then raM(~h) < raM(~r2). For an admissible representation 
a of M, we denote by Indpa(a) the parabolically induced representation of G, 

induced by a. 
The following simple lemmas explain how we shall conclude reducibility and 

irreducibility of parabolically induced representations in most cases. 

3.1. LEMMA: Let r,  ~r' and II be admissible representations of G of finite length. 

Suppose: 

(i) 1r_<II and 7r'_<H; 

(ii) there exist parabolic subgroups P1 = MIN1 and P2 -- M2N2 of G so that 

raM,(~) ~raM,(~') and raM2(~)+raM2(~')~raM2(n). 

Then ~r is reducible (and has a common irreducible subquotient with ~ff ). 

Proof: Note that (ii) implies ~r ~ ~r' and ~r + ~r' ~ II. Using (i) one now gets 
directly the lemma. I 

The addition among representations in the above formulas is addition among 
semi simplifications in the Grothendieck group. 

3.2. Remark: We shall usually apply the above lemma in the following setting: 
let P0 = MoNo, P' = M'N ' ,  P"  = M " N "  be parabolic subgroups of G, let 
ao, a ~, a" be irreducible admissible representations of Mo, M',  M "  respectively, 
and suppose that: 

(i) Indapo(ao) <__ Indap,,(a '') and Indap,(a ') _< Ind~,,(a"); 
(ii) there exist parabolic subgroups P1 = M1N1 and P2 = M2N2 of G such that  

raM, (Indpao (ao)) ~ raM, (Indp a, (a')) and ram 2 (Indpao (ao)) + raM2 (Indp a, (a')) 

raM2 (Indap,, (a")). 
Then Ind~o(a0 ) reduces (and has a common irreducible subquotient with 

Indap, (a')). 
Note that for admissible representations lh, Ir2 of G of finite length, 7rl <__ ~r2 if 

and only if for any irreducible admissible representation a of G, the multiplicity 
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of a in ~rl is less than or equal to the multiplicity of a in ~r~. Therefore to show 

7rl ~ ~r2 it is enough to find irreducible a such that its multiplicity in ~rl is 

greater than the multiplicity in 7r2. In particular, it is enough to find irreducible 

a which is a subquotient of 7rl but not of 7r2 (if such o exists). Clearly, to show 

~rl ~ ~r2 it is enough to find some parabolic subgroup P = M N  of G such that 

r ~  (lrl) :~ rGM (~2) since the Jacquet fimctors are monotone (we already used that 

in the proof of Lemma 3.1). 

Denote by )v the set of all standard parabolic subgroups of G and set 9l+(G) -- 

{x �9 _> 0}. 

3.3. Definition: Let P0 = MoNo be a parabolic subgroup of G, let 00 be an 
irreducible admissible representation of M0, let X be a non-empty subset of P 

and let t~ be an integer _> 2. A function r = ( r  r X --+ (~+(G))  ~ will be 

called a coherent X-decomposition of order l of Jacquet modules of Ind~o (00) if 

(i) ~i=1 r  = rGM(IndpGo(~ for all P �9 X; 
(ii) M "  t! rM, ( r  = r  when P' ,P" �9 X,  P' C P" and 1 < i < ~; 

(iii) r  = 0 if and only if Cj (P) = 0, for all P �9 X and i, j �9 {1 , . . . ,  e}. 

We call a coherent X-decomposition of order t of Jacquet modules of IndpGo (00) 

non-trivial, if r (P) ~ 0 for some P �9 X. A coherent P-decomposition of order 

of Jacquet modules of IndpGo (00) will be called a full coherent decomposition of 

order g of Jacquet modules of IndpCo (00). A coherent X-decomposition of order 2 
of Jacquet modules of IndpCo (a0) will be simply called a coherent X-decomposition 

of Jacquet modules of IndpGo (00). 
From the above definition it is clear that each full coherent decomposition r 

of Jacquet modules of Ind~o(a0 ) is non-trivial. Further, it is completely deter- 
mined with r which is a decomposition of IndPCo (00) into a sum of two strictly 

positive elements of ~(G) .  From the proof of the following lemma we can con- 

clude that the converse is also true: each decomposition of IndCpo(a0) into a sum 
of two strictly positive elements of JR(G) determines a non-trivial full coherent 

decomposition of Jacquet modules of IndpGo (00). 

3.4. LEMMA: Suppose that 0o is an irreducible admissible representation of Mo. 
If  IndpGo (a0) reduces, then there exists a full coherent decomposition of Jacquet 

modules of IndpGo (00). This decomposition is non-trivial. 

Proo~ Suppose that IndpGo (ao) reduces. Choose a non-trivial proper subrepre- 

sentation lr of IndpGo (ao). Define r P --+ ~+(G)  x ~t+(G) by the formula 

r  --- (s.s.(rGM(r)), s.s.(rcM(IndCp'o(ao)/~r))), 
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where P --- M N .  Note that the property (i) of Definition 3.3 holds since Jacquet 
functors are exact. The property (ii) follows from the transitivity of Jacquet 

modules ((c) of Proposition 1.9 of [BZ]). It remains to see that r satisfies also the 
third property of the definition. Let P -- M N  be a parabolic subgroup of G, let r 

be an irreducible subquotient of Ind~o (a0) and suppose that rCM (IndCPo (co)) ~ 0. 
To prove (iii), it is enough to show that rGM(T) ~ O. 

Choose a parabolic subgroup Pg C_ P0 of G such that there exists an irre- 
t Mo i ducible cuspidal representation a 0 of M~ satisfying ao ~ IndpgnM o (a0). Then 

IndVpo(a0) r IndpVg(a~). Choose a parabolic subgroup P' C_ P of G which 

satisfies reM,(IndpGg (a~)) r 0 and which is minimal among all parabolic subgroups 

which satisfy this. Then r~,(IndpG~(a~)) r 0 is a cuspidal representation (oth- 
erwise, we could choose smaller P'  which satisfies the above requirements). Let 

a' be some irreducible quotient of r~,(IndGpg(a~)). Then Frobenius reciprocity 

implies that there exists a non-trivial intertwining of IndVp~(a~) into Indp C, Ca'). 
Theorem 2.9 of [BZ] implies that P~ and Pg are associate parabolic subgroups. 
Now Lemma 2.12.4 of [Si] implies that rCM,(~ ") r 0. Since rGM,(T) -~ rM,(rGM(T)), 
we obta in  rG(T)  r 0. This finishes the proof. I 

3.5. Remark: From the above proof we see that the following fact holds. Let 
ao be an irreducible admissible representation of Mo and let T be a non-zero 

subquotient of Indepo(a0). If rcM(IndpCo(a0)) r 0 for some parabolic subgroup 
P = M N ,  then  rGM(T) • O. 

We could easily prove also that if IndCpo (a0) has length > k, then there exists 
a full coherent decomposition of order k of Jacquet modules of IndpGo (a0). 

Let Y c X C 7 ). Suppose that r is a coherent X-decomposition of Jacquet 
modules of Ind,0 (a0) and suppose that rp c (IndpCo (a0)) r 0 for some P e Y. Then 
the restriction elY is a non-trivial coherent Y-decomposition of Jacquet modules 
of Ind~o (a0). Therefore we have the following: 

3.6. LEMMA: Let P0 = MoNo be a parabolic subgroup of G and let ao be an 

irreducible admissible representation of Mo. Assume that X C P is non-empty. 

Suppose that there does not exist a coherent X-decomposition of Jacquet modules 

of IndCpo (a0). Then IndVpo (a0) is irreducible. 

Suppose that P, P'  and P~' are proper parabolic subgroups of G such that 

p C p' ,  p C p,, and P' r P". Coherent {P,P',P"}-decompositiOns play 

an important role in proving irreducibility of parabolically induced representa- 
tions. We can call coherent {P, P/, P"}-decompositions of Jacquet modules with 

P, P', P"  as above, coherent decompositions of V-type. 
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The following lemma enables one to check sometimes in a simple way the 

condition of nonexistence from the above lemma. This lemma will enable us to 
prove irreducibility in a number of cases. 

3.7. LEMMA: Let Po = MoNo be a parabolic subgroup of G and let ~ro be 

an irreducible admissible representation of Mo. Let P', P", P "  be parabolic 

subgroups of G such that P' C_ P", P' C_ P'" and rCM,(IndpGo(aO)) # 0. Suppose 

that there exists an irreducible subquotient r" of raM,, (IndpCo (ao)) such that for 

any irreducible subquotient r"' of raM,,, (IndpGo (ao)) we have 

M "  MI'I i!1 
r M, (r") + r  M, ( r )  ~ rvM,(IndpOo(a0)). 

Then IndCp( a) is irreducible. 

Sometimes is convenient to write the condition 

" M'" (T"') raM, (IndPGo rg, + ru, 

in the form 
' "  m M "  V TII) .  r M, ( r )  ~ r M, (rM,,(IndGpo(aO)) -- 

ProoF. We shall show that there does not exist a coherent {P ' ,P" ,P ' "} -  

decomposition of Jacquet modules of IndpGo (a0). Suppose that some such decom- 
position r exists. Without loss of generality we can assume that r "  < e l (P" ) .  
Now raM,(IndpGo(ao)) = r  + r = rM ,M''(r + rM'"'~M' t~'2t~-r~"'JJ _ 

M t t r  I A  [D/II~'% rM~ ' (T") + r M, [~'2 t r  H- Since r (P"') # O, this contradicts (ii). | 

In the case of induction by unitarizable irreducible representations, the follow- 
ing lemma lists some useful facts. 

3.8. LEMMA: Let Po = MoNo be a parabolic subgroup of G and let ao be an 

irreducible unitarizable admissible representation of M. 

(a) I f  the multiplicity of ao in raM ~ (IndpCo(ao)) is one, then IndpGo (go) is irre- 
ducible. 

(b) I f  the multiplicity of ao in r~o(Indpao(ao)) is two, then Indpao(go) is either 

irreducible or a direct sum of two irreducible non-isomorphic representa- 

tions. 

(c) Let P6 be a parabolic subgroup of G such that P6 C_ Po. Suppose that 

there exists an irreducible subquotient TO of ram ~ (IndpGo (a0)) of multiplicity 

one. Let a~ be an irreducible admissible representation of M~. Suppose 

that the following conditions hold: 
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(i) Indpao (a0) ~-+ Indpa~(a~), 

(ii) a' o ~ rM~(raMo(IndGpo(ao)) - TO) (i.e. the multiplicity of a' o in 
Mo G G rM~ (ruo (Indpo (do)) - To) is O; note that raM ~ (Indapo (do)) - TO >_ 0). 

Then IndaPo (do) is irreducible. 

(d) Let P'  and P"  be parabolic subgroups of G such that P '  C Po and P '  C P ' .  
Suppose that there exists an irreducible subquotient T" of raM,, (Ind~o(aO)) 
of multiplicity one. Let TO be an irreducible subquotient of ram o (IndpGo (do)) 
and let a' be an irreducible admissible representations of M' .  Suppose that 

the following conditions hold: 

(i) IndpGo (do) ~-4 Indap,(a'). 

(ii) I f  T~ is an irreducible subquotient of raMo(Indpao(aO)) which is not 
Mo , isomorphic to TO, then a' is not a subquotient o f t  M, (T0). 

Mo (iii) There exists an irreducible subquotient p' of r M, (To) such that the 
multiplicities of p' in rMM I' (T") and raM , (Indapo (ao)) are the same. 

Then Indpao (ao) is irreducible. 

Proof" Write Ind~o (ao) = ~ik 1 ?7~iTri into a direct sum of irreducible represen- 
tations such that lri ~ lrj if i # j.  Then d = dirnc Enda (IndaPo (ao)) = ~i=xk mi.2 
Further, Frobenius reciprocity implies dirnc HOmMo (raMo (Indpao (ao)), ao) = 

k 2 Clearly, if the multiplicity of ao in raMo(Indapo(ao)) is one (resp. 2), E i - ~ l  m i  �9 

then d < l (resp. d <_ 2). This proves (a) and (b). 

(c) There exists an irreducible subquotient ~ of IndGPo(aO) such that TO < 
ram ~ The multiplicity of in Ind o( O) is one. Suppose that Ind  o( o) is 
reducible. Let It' be some irreducible subquotient of IndPGo(a0) which is not iso- 
morphic to ~r. Then To is not a subquotient of raM~ (r'). Since Ind~o (a0) is com- 
pletely reducible, 7r' is a subrepresentation of Ind~o (a0). Thus r '  ~ IndpG~(a~) 
by (i). Frobenius reciprocity (F-R) implies that a~ is a quotient of rGM~(r ') ---- 

Mo G t rM~ (rMo(Tr)). Now (ii) implies that TO is a subquotient of raMo(~r' ). This contra- 
dicts our choice of r ' .  The contradiction completes the proof of (c). 

(d) Choose an irreducible subquotient r of Ind~o (a0) such that T" <_ rGM ,, (Tr). 
Then the multiplicity of ~r in IndCPo (do) is one. Suppose that Ind~o (a0) reduces. 
Let ~r' be some irreducible subquotient of Indapo(ao)/r. Then as in the proof of 
(c) we see that a '  is a quotient of c ram , (71") Mo G , rM,(r '  ). Since = rM,(rMo(Ir )), we 
conclude that TO is a subquotient of ram ~ (ld). Now 

rGM,(Indapo (do)) >_ rGM, (~r)+ rCM,(Tr ') 
M " G  Mo G , 

=rM, + rM, C Mo(  )) > + 
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M r/ 
From here we see that the multiplicity of p' in r M ,  (1 -II) is at least one less than 

the multiplicity in r~/,(IndpCo(aO)), which contradicts (iii). This contradiction 

completes the proof. | 

Note that  (c) is a special case of (d). 

4. On unitary induction of  GL-type 

We shall describe first the types of cuspidal reducibilities with which we shall 

work in this paper. Suppose that p is an irreducible cuspidal representation of 

GL(p, F),  and a a similar representation of Sq. Write p = ~ p ~ ,  where p~ is 

unitarizable and/~ E R. If p ~ a reduces, then p~ ~ (pU)~. One can expect that  

the following should hold: 

T~(1/2)z 
there exists a0 E (1/2)Z 

such that v~p ~ >~ a is irreducible for a E R\{+a0} 

(see [TT] for more explanations regarding this property). Note that in the above 

formulation we do not claim that there must be reducibility at =ka0. If the above 

condition holds for a pair p and ~, then we shall say that  they have reducibility 

in (1/2)Z, or (1/2)Z-reducibility. If for a pair p and a one can find a0 already in 

{0, +1/2,  + l}  such that the above condition holds for that pair, then we shall say 

that  p and a have generic cuspidal reducibility (see [TT]). F. Shahidi has proved 

that  if a is generic, then p and a have generic cuspidal reducibility ([Sh2]). He 

has informed us that  his Conjecture 9.4 from [Shl] would imply that 7~(1/2)z 
holds in general (for charF = 0). C. Mceglin has a conjectural description of a0 

(from T~(1/2)z) in terms of Langlands correspondences. 

Let us note that  both Steinberg representations and degenerate principal 

series representations show up in the setting of generic cuspidal reducibilities. In 

understanding reducibility of parabolically induced representations, the first 

classes of representations to be studied are degenerate principal series represen- 

tations and representations parabolically induced by (twists of) Steinberg rep- 

resentations. This is the reason that our paper mainly deals with parabolically 

induced representations related to the generic cuspidal reducibilities (it is impor- 

tant to note that with respect to the irreducibility, a lot of the work done in the 

setting of generic cuspidal reducibilities applies also to the setting of non-generic 

cuspidal reducibilities). Our method applies also, without any significant modifi- 

cation, to the setting of non-generic cuspidal (1/2)Z-reducibilities. It seems that  

before the summer of 1996 there were no known examples of reducibilities which 
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are not generic ([Mg], [Rd3]). The last section of the paper is devoted to the 

setting of non-generic cuspidal reducibilities. 

Throughout this section we shall assume that p is an irreducible unitarizable 

cuspidal representation of GL(p, F) and a an irreducible cuspidal representation 

of Sq, while n will be a positive integer and m will be a non-negative integer. 

Irreducibility results that we prove in this section will follow from Lemma 3.8, 

while reducibility results will follow from Remark 3.2. 

4.1. PROPOSITION: Assume that yl/2+kp )1 (7 is irreducible for any k E Z. Then 
the representation ~([u-m-1/2 p, um+ l/2 p]) )~ (7 is irreducible. 

Proof: Using (1.3) we compute 

M*(5([v-m-~/2p,  vm+l/2 p]) ) 

-~ (m ~ 1) o (,~ (~7~2") o/~ o m*((~([v-m-1/2p, l]m+l/2p])) 

= (rn | 1/o (~ | 
rn+l 

o ~( ~ ~([~+,/2p,.m+lnpl ) | ~([~-~-xn0, ~-1/2p11) 
k=-m-1 

= (m | 11 o (~ ~m*) 
m+l 

( ~ 5([V-m-i/2p, Vk-1/2p]) | 5([vk+l/2p, vm+i/2p])) 

k-~-m-1 
m+l 

---- (m | 11( ~ ~([V-kq-i/2p, vrnq'l/2p])(~ 

k~-rn-1 
m+l 

( ~  (~([b'/-l-i/2p, vrn-l-1/2p]) ~ (~([vk-l-i/2p, I/l-1/2p]))) 

l=k 
mq-1 m+l 

= ~ ~([~-~+'n~,~+~n~l) 
k=-m--1 l=k 

• 5([tjl+l/2p, vrn+l/2p]) @ 5([vk+l/2p,/]l-1/2p]). 

Theorem 2.3 implies 

#*(5([v-"~-U2p, vm+l/2p]) >~ a) = M*(5([v-m-'/2p, vm+l/2p])) )4 #'(a) 

---- i*(5([l]-m-l/2p,  vm+l/2p])) )~ (1 | a). 

Now we can see easily semi simplification of the Jacquet module of 

5([~-'~-1/2p, vm+l/2p]) ~ a for any standard parabolic subgroup. For this proof 
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(4.1) 

S.S.(SGL(e~([V-m-1/2p, lgm+l/2 p]) >~ (7)) 

m+l 
= E (~([U-k+l/2/~' Urn+l/2/)]) • 5([uk+I/2P' um+l/2fl]) | a. 

k=-m-1  

Note that  all representations in the above sum are irreducible (see Theorem 1.1). 

Suppose that p is not selfcontragredient, i.e. p ~ /5. Then GL-supports of 

representations in the above sum are all different. From this we conclude that 

the multiplicity of 5([u-m-U2p, u'~+l/2p])| in (4.1)is one. Now (a) of Lemma 

3.8 implies irreducibility. 

We shall assume that p is selfcontragredient in the rest of the proof. In the 

proof of irreducibility we shall apply (c) of Lemma 3.8. Since p = fi, we can write 

(4.1) in the following way: 

(4.2) 

S.S.(~GL(~([~,-~-V~p, ~,m+~/~p]) ~ 0)) 
=5([ul12p, u"+112)p]) x 5([ul12p, u'~+l/2p]) | a 

m 

-t- 2 E ~([V-1/2-k p' um+l/2) P]) • ~([I/3/2+k P' llm+1/2 p]) | (7. 
k=O 

Denote TO = 5([uW2p, Um+~12)p]) x 5([ul12p, u'~+ll2p]) | a. Obviously, the mul- 

tiplicity of TO in (4.2) is one (this is easily seen from the fact that all elements of 

the sum in the last row have different GL-supports than TO). 

From (1.2) we get 

~([v-m-1/2p,  vm+l/2p]) >~ O" ~ vm+l/2p • um-1/2p • "" • v - m - 1 / 2 p  >~ r 

We shall now use repeatedly the fact that uep x ue'p is irreducible for g,s E R if 

Ig - / ' ]  ~ 1 (see Theorem 1.1), Proposition 2.1 and (1.1), to show the following 
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isomorphisms: 

v m + l / 2 p  X vrn-1 /2p  X l]m-3/2p X "'" X v - m + 3 / 2 p  • ~ , -m+l /2p  • v - m - 1 / 2 p  >4 a 

= ( v m + l / 2 p  X v m - 1 / 2 p  X "'" • v - m + a / 2 p  X v - m + l / 2 p )  )4 ( v - m - 1 / 2 p  >4 a)  

~- (u'~+l/2p x u'~-~/2# x . . .  x u-~+a/2p  x u -~+ l /2p )  )4 (u'~+1/2# )4 a) 

( u m + l / 2 p  X u m - U 2 p  x " "  x u - m + a / 2 p  x ( u - ~ + t / 2 p  x um+U2p)) )4 a 

-~- ( l]mW1/2p X ljrn--1/2p X "'" X u--rnq-3/2p X ( / ]m-bl /2p X / ] - -m-kl /2p))  N O" 

(/]rn-t-1/2p X l/rn--1/2p X "'" X (l]-m't-3/2p X /]rn-kl/2p) X l#--mW1/2p) )4 O" 

(l]m-1-1/2p X l]m--1/2p X "'" X l]rn+l/2p X l]-m-t-3/2p X l-s-rnq-1/2p) N O" 

~-- u m + l / 2 p  X u m - 1 / 2 p  X "'" X u l / 2p  X Izm+l/2p X U-1/2p  X U-3/2p  

X "'" X l ] -m-kl /2p  )40. 

Repeating the above procedure with l ] -m+l /2p ,  v - -m+3/2 f l , . . . ,  b'l/2p, we get 

12m+l/2p X V m - 1 / 2 p  X ' ' '  X v - m - 1 / 2 p  )4 O" 

~ y m + l / 2 p  X l ]m-1/2p  X . ' '  X l]l/2p • 1]rn+l/2p X b'rn-1/2p X "'" • l]l/2p ;4 O. 

Therefore 

(4.3) 
~([1]-rn-X/2 p, l]m+ l/2 p]) N o" ~ vrn+l/2 fl X " " " X v l /2  fl X l]m+ l/2 p X " " " X lxX/2 p N ~. 

Denote a~ = l]m+I/2 p @ ' "  | u l /2  p @ b'm+I/2 p @ " "  @ v l /2  p @ a. 

According to (4.2), to prove that  condition (ii) in (c) of Lemma 3.8 holds, it is 

enough to prove that  a~ is not a subquotient of r(p)2,~+2 (~([u-1/2-kp, um+l/2)p]) 

XS([ua/2+kp, u m + l / 2 p ] ) ) |  for any 0 < k < m. This follows easily from the fact 

that  each 5 ( [ u - 1 / 2 - k p ,  v'~+l/2)p]) x 5([u3/2+kp, vm+l/2p]), 0 < k < m, has some 

u tp  in the support with e < 0. We have proved that  conditions in (c) of Lemma 

3.8 hold. The proof is now complete. | 

4.2. PROPOSITION: S u p p o s e  tha t  v k p  )4 a is i r reduc ib le  for any k E Z. Then 

~([u-'~p, unp]) )4 a is irreducible .  

Proof." If p is not selfcontragredient, then one gets as in the proof of the above 

proposition that  ~([u-np, unp]) )4 a is irreducible. We shall assume further that  

p is selfcontragredient. We shall prove irreducibility in this case using (d) of 

Lemma 3.8. From Theorem 2.3 and (1.3) we get in a similar way as in the proof 
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of the preceding proposition 

s.s.(s(2~,)(5([.-~p, u"p]) )4 o)) 

= L ~([~-~+~P'~nP]) • ~([u~+~P,~"P])| )4 o 

(4.4) k=-~ 

+ 2 ~ 6([u-a+ap, u'~p]) x 5([uk+lp, u~p]) | ukp )4 a, 
k = l  

(4.5) s.s (sG, (~([.-=p, ."p]) )4 o)) = 2 ~ ~([.-~p, ~"p]) • ~([.k+,p,.=p]) | o. 
k=0 

In the formula (4.4), we see that all the elements in the sum in the second row 

are irreducible. Denote T" = 5([up, unp]) • 6([up, u'~p]) | p )4 a. Then T" has 

multiplicity one in (4.4). Further, all representations in the sum of the right 

hand side of (4.5) are irreducible. Denote the first representation 6([p, unp]) • 
6([up, unp]) | a in that sum by To. 

Now in a similar way as in the last proof we obtain 

~ ( [ . - ~ p ,  u"p])  )4 o 

"--+ unp  X u n - l p  X " "  X u - n + l p  X u - n p  )4 O" 

u n p  X ~ , n - l p  X . - -  X u - n + l p  X unp  )~ O" 

"~ unp  u - l p  V - n + l p  = x . . . x u p x p x u n p x  x . . - x  ) ~ a = . . .  

�9 . .  ~-- unp  X . ' .  X up • p • vnp  • v n - l p  X ' ' .  X up )4 0". 

Denote a' = u n p |  | 1 7 4 1 7 4  | 1 7 4  

To prove condition (ii) in (d) of Lemma 3.8, it is enough to show that a '  is not 

a subquotient of r(v),.+l (6([u-kp, u"p]) x 5([uk+ap, u"p])) | ~ for I < k < n (see 

(4.5)). This follows from the fact that each representation 

5([u-kp, u"p]) x 6([uk+lp, u"p]) | a, 1 < k < n 

has in GL-support some utp with g < 0 (for example u-kp; for the above argu- 

mentation see the connection between Jacquet modules and supports described 

in the first section). 

From (1.3) we see that 

~'o ~ ~([-p, ~ p ] )  x 6((p, u"p]) |  ~ u'~p x u'~-~p x . . .  x ~,p x u"p x . . .  x u~, x p)4 ~. 
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Therefore pl = v,~p | v ,~ - lp  | . . .  | vp  | vnp  | . . .  | vp  | p | a is a quotient 

of s(p)2,+l (r0). It remains to prove (iii). From (4.5) we see that  it is enough to 

show that  ff cannot be a subquotient of 

for 1 < k < n. Since s.s.(S(p)(Vkp >4 a))  = vkp  | a + v - k p  | a by Theorem 2.3, 

we see that  this is true (note that  ff has p | a at the end of the tensor product). 

This completes the proof. | 

4.3. PROPOSITION: S u p p o s e  tha t  v l / 2p  :~ a reduces. T h e n  

reduces  in to  a s u m  o f  two inequivalent  irreducible  representat ions .  

Proof." We shall use Lemma 3.1 in the form of Remark 3.2 to prove reducibility. 

From (1.2) and (ii) of Proposition 2.4 we easily get embeddings 

(4.6) 5 ( [ v - m - 1 / 2 p ,  vm+l /2  fl]) N o" ~ vm+l /2p  • v m - 1 / 2 p  • " "  • v - m - X / 2 p  :~ 0", 

(4.7) 
.m+lnp], o) 

r vm+l /2p  X 1]m-1/2p • ' ' '  121/2p • vm+l /2p  • v m - 1 / 2 p  • �9 �9 �9 121/2p >4 (7. 

Note that  

1]m+l/2p x vm-1 /2 f l  • ' ' "  • v--m--1/2p ~ (7 = 

v m + l / 2 p •  fl X ' '"  v l / 2 p  X 1]m+l/2p • Vm-1 /2p  X . ." v l / 2 p  ~ (7 

in R ( S )  (use Proposition 2.2 and commutativity of R). Now embeddings (4.6) 

and (4.7) give corresponding inequalities in R ( S ) .  

Using Theorem 2.3 we can see that the multiplicity of 5([vl /2p,  vm+l/2p])  2 | a 

in each of 

SGL(~([I/1/2p, l/m+l/2p]) >4 (~([vl/2p, vm+l/2p],  Or)) 

and 8GL(V-m-1 /2 f l  X l]-m+l/2f l  X v - m + 3 / 2 p  X . . .  X 1]m+l/2p :~ Of) is one. This 

implies 

SGL(~([l]--m--1/2 p, lffn+l/2 p]) :~ 0") 

+ sGL( ([ lnp,.m+lnp]) o)) 
S G L ( V - m - 1 / 2 p  • v - m + l / 2 p  • v - m + 3 / 2 p  • . . .  • vm+l /2p  )4 (r). 
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From Theorem 2.3 we get that the multiplicities of a([zFm-l/2p, t*rn+l/2p]) |  

in 

o) 

and 

are two and one respectively. This implies 

o-) 
o% 

Now we can conclude reducibility from Remark 3.2. 

We have already mentioned the fact that  the multiplicity of 
~([u-m-1/2p ,  um+l/2pl ) @ a in SGL(~([u-m-1/2p,  um+l/2p]) >~ a ) i s  tWO. Thus 

~([u-m-1/2p ,  L'm+U2p]) >~ a splits into two irreducible inequivalent representa- 

tions by (b) of Lemma 3.8, since we have already proved reducibility. This 

finishes the proof. | 

4.4. PROPOSITION: Suppose that  vp ~ a  or p ~ a  reduces. Then ~([u-n p, v'~ p]) >~a 

is a s u m  o f  two inequivalent irreducible representations. 

Proof." We sketch very briefly the proof since it is very similar to the previous 

one. It is based also on the principle exposed in Lemma 3.1 and Remark 3.2. 

Suppose that up x a reduces. One considers 6([t,-np, u'~p]) >~ a, 6([p, unp]) x 

5([up, u'~p], a) and u - n p x  u- '~+lp• . . .  x u '~pxa.  The multiplicities of 5([p, unp]) x 

~;([up, unp]) | a in the Jacquet modules are now two. One proves the reducibility 

as above. Now suppose that  p x a reduces. Write p ~ a = T1 ~3 T2 as a sum of two 

irreducible representations. Consider 5([u-'~p, u"p]) x a, ~([t,p, u~p]) 2 x rl  and 

v - ~  p x u-'~+ l p x . . . x un p x a. The multiplicities of 5([p, un p]) x 5([up, vn p]) | a 

in the Jacquet modules are now 2, 1, 2, respectively. Again one proves the 

reducibility as in the previous proposition. | 

4.5. Remark :  Using the generalized Zelevinsky involution, Propositions 4.1-4.4 

imply the dual result: with the same assumptions on p, a, n and m as before, we 

have: 

(i) If up >~ a or p x a reduces, then s([p-'~p, v'~p]) x a is a sum of two inequivalent 

irreducible representations. 

(ii) If L, kp X a is irreducible for any k E Z, then s([u-np, u'~p]) x a is irreducible. 

(iii) If t,1/2p x cr reduces, then s ( [v -m-1 /2p ,  um+l/~p]) x a reduces into a sum of 

two inequivalent irreducible representations. 
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(iv) If/]i/2+kp >4 a is irreducible for any k E Z, then s([/]-m-1/2p,/]m+l/2p]) >4 a 

is irreducible. 

5. On irreducibi l i ty  of  vtp x 5(vtp, a) and vtp  >4 L(vtp,  a) 
(Z (1/2)%, fi >_ 1) 

In this section, and the following one, we shall prove irreducibility of a 

parabolically induced representation for which there exist coherent {:P\{S~}}- 

decompositions of Jacquet modules (P denotes the set of all standard parabolic 

subgroups in Sn). These two cases are the only cases of non-unitarizable irre- 

ducibilities considered in this paper, which can not be concluded proving non- 

existence of coherent {P\{S~}}-decompositions of Jacquet modules. The existing 

coherent decompositions of Jacquet modules (in these two cases) play indirectly 

a role in proving irreducibility. The ideas used in the proofs are similar to those 
used in the third section, but slightly more sophisticated. 

5.1. PROPOSITION: Let p be an irreducible unitarizable cuspidal representation 
of GL(p, F) and let a be an irreducible cuspidaJ representation of Sq. Suppose 
that fl > 1/2 is in (1/2)Z and that utp >4 a reduces. Then up t >4 (i(utp, a) and 
v t  p >4 L(vt  p, a) are irreducible. 

Proof: It is enough to prove that u~p >4 ~(v~p, a) is irreducible (the irreducibility 

of the other representation follows using the generalized Zelevinsky involution). 

Suppose that the induced representation reduces. Note that 

(5.1) SGL(/]tp >4 (~(vtp, a))  : /] tp X /]f~p ~ Cr - F / ] - t p  X /] tp | a 

by Theorem 2.3. Since (5.1) has length two, and since we have supposed re- 
ducibility of/]~p >4 5(vtp, a), there exists a subquotient ~r o f / ] tp  >~ 5(/]tp, a) 
which satisfies 

8Ga(7r ) = /]tip X / ] tp@ a. 

Now evidently 

(5.2) (~([/]--~+lp,/]t--lp]) >4 71" __~ (~([/]--,q-lp,/]t--lp]) X /]--t X / j r  )4 0", 

(5.3) ~([/]-~ p,/]~ p]) >4 a <_ ~([/]-t+lp,/]~-]p]) x / ] - 8  x / ] t  >4 a. 

From Theorem 2.3 and (1.3) we get 

(5.4) s.s.(sOL(6([u-tp, vtp]) >4a)) = 
t 

a([/]-%, .tp]) x a([/]k+lp, .tp]) 
k = - , O - 1  
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(5.5) 
s s (*GL( /p  • p-Zp x 5( [g-Z+~p, / -~p])  ~ ~)) = 

fl-1 
(pflp + u-/3p) • (vflp + r-tip) X E ~([p-kp, gfl-lp]) • 5([gk+lp, g/3-1p]) | 0", 

k=-fl 

S.8.(SGL((~([g-~+lfl , /2/3-10] ) :~ 71")) : 

(5.6) /3-, 
grip X z]~p • E 5([g-kp, p/3-1p]) • 5([gk+lp,.~-lp]) | a. 

k=-/3 

Since the later Suppose that ~- is a subquotient of 6([u-/3p, gl3p]) )4 a. 
representation is unitarizable, Frobenius reciprocity implies 

(5.7) 6 ( b - ~ P , / P ] )  | a < SGL(T)- 

Note that 6([p-~p, u~p]) | a is not a subquotient of (5.6) (observe that u-/~p 

cannot appear in the support of 
/3-1 

/ p  X P/3p X ~ ,~([gp, g/3-1d) X ,5([Pk+'p, g/3-1p]), 
k = - B  

which is on the right hand side of (5.6)). Therefore, if T is a subquotient of 
5([u-/~+lp, u/3-1p]) ~ r ,  then 

(5.8) ~( [~- /3p, /p])  o o ~ sG,~(~) 

We shall discuss now two separate cases, although the principles of our thinking 

in both cases are the same. 
Suppose that fl E 1/2 + Z. Then the formulas (5.4), (5.5) and (5.6) imply that 

the multiplicity of 6([u1/2p, p/~p]) x 5([ul/2p, u/~p]) | a in each of 

sGL(,~([P-'~p, ~'~p]) :~ ~), ~CI~(g/3P x p-~p x ,~([~,-~+~p, ~,~-~p]) >~ o) 

and SCL(6([u-~+lp, g/3-ip]))~ 7r) is 1. This, and inequalities (5.2) and (5.3) imply 

that there must exist a common irreducible subquotient T of 5([U-13p, g/3p]) )4 a 

and 6([u-/3+1p, u/~-lp]) )4 r .  Now (5.7) and (5.8) hold for the same T. This is a 

contradiction which completes the proof in this case. 

Suppose now that fl E Z. Similarly as before, we see from formulas (5.4), 

(5.5) and (5.6) that the multiplicity of 6([p, u/3p]) • 5([up, v~p]) | ~ in each of 
SGL(5([le-/3p, tflp]) >4 a), SGL(g/3p • g-/3p X 5([i]-/3+lp, lfl~-lp]) :~ •) and 

SGL((~([p-/3+lp, g/3-1p]) :~ 71) is 2. Now we get a contradiction in the same way as 

in the first case (using (5.2) and (5.3); again T must exist as above). This ends 

the proof. | 
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6. On  i r r educ ib i l i ty  of  5([p, up]) >4 ~ a n d  L(p, up) >4 a 

Let p be an irreducible selfcontragredient cuspidal representation of GL(p, F)  

(selfcontragredient means that  p ~-/5). An irreducible cuspidal representation of 

Sq will be denoted by a. In this section we shall assume that p >4 a and up >4 a 

are irreducible. The following lemma follows directly from Proposition 4.2 and 

results in [Go] about R-groups of Sp(n, F) and SO(2n + 1, F). 

6.1. LEMMA: Suppose that char F = O. Then the representation 

p x ~([u-'p, up]) >4 o is irreducible .  

6.2. LEMMA: The multiplicity of S([p, up]) x 5([p, up]) |  in Iz* (px px up x up >4a ) 

is 4. It has the same multiplicity in #*(p x 5([u-ip, up]) >4 a). 

Proof." Observe that  

s's'(s(4;) ( ( ; x p x u p X u P > 4 a ) ) ) = 4  E pxpxue lpXu~2P|  
(~l,~=)e{• = 

Use Theorem 1.1 to see the first claim of the lemma. The other claim follows 

from 

s.s.(s(4p)(p x a ( [ - - b ,  up]) >4 ~)) = 4p x ~([u-lp, up])| o + 4p x up x a([p, up]) | 

and Theorem 1.1. l 

6.3. PROPOSITION: Suppose that char F = O. I f  p >4 a, up >4 a are irreducible, 

then the representation 5([p, up]) >4 a is irreducible. 

Proof: Suppose that  we have a reduction. Write 

#*(5([p, up]) >4 a) =I | 6([p, up]) >4 a +  [up | p >4 a + p | >4 a] 
(6.1) 

+ [25([p, up]) + n((p,  up)) + 5([u-lp, p])] | a]. 

This implies that  there exists an irreducible subquotient or such that S(p)(or) = 

up | p >4 a. One sees directly that  s.s.(s(2p)(or)) = 2~([p, up]) | a. Now consider 

5([p, up]) >4 or. One gets that 

s.s.(S(4p)(5([p, up]) >4 or)) =25([p, up]) 2 | a + 2p x up x 5([p, up]) | a 

+ 2~([u- 'p,  p]) x ~([p, up]) | o.  

Since 45([p, up]) 2 | a < /~*((~([p, up]) >4 or), we have by the preceding two lemmas 

p x 5([v-lp, up]) >4 a _< 5([p, up]) >4 or. This implies s(4v)(p x 5([u-lp, up]) >4 a) _< 

S(np) (~([p, up]) >4 or), and furthermore, 

4p x ~( [u- lp ,  up]) | o + ,ip x up x ~([p, up]) | ,7 

2r t~p]) 2 | cr + 2p X up X ~([p, up]) | a + 2~([u-lp, p]) X r up]) | or. 



M. TADIC 58 Isr. J. Math. 

Looking at p • 5([L,-lp,~p]) | cr we see that this cannot be the case. This 
completes the proof. | 

Now the generalized Zelevinsky involution implies the following 

6.4. COROLLARY: Assume charF  = 0. I f  p >~ a and vp >~ a are irreducible, then 

the representation L(p, lip) 5~ (7 is irreducible. 

7. R e d u c i b i l i t y  po in t s  of  some  genera l ized  pr incipal  series a n d  

genera l i zed  d e g e n e r a t e  pr incipal  series r ep re sen t a t i ons  (cuspidal  

r educ ib i l i t y  a t  1) 

Reducibility and irreducibility results in the next three sections will be obtained 

on the basis of principles of Lemma 3.1 (and related Remark 3.2), and Lemma 

3.7. 

Since 7r >~ a ~ ~ >~ a in R(S)  by Proposition 2.2, we shall consider only the 

case of a ___ 0 in the theorems in this and the next section. From this case one 
can easily describe the case of a < 0. 

7.1. THEOREM: Suppose that p and Po are irreducible unitarizable cuspidal 

representations of GL(p, F) and GL(p0, F) respectively. Let a be an irreducible 

cuspidal representation of Sq. Assume that ~,p >~ a reduces. Let n be a positive 

integer and a C ~, a ~_ O. 

(i) Suppose p ~ Po. Then ~ P o  )~ (f([~,p, v'~p],(7) reduces if  and only if  

v~po >~ a reduces. I f  po >~ a reduces, then Po )~ 5([vP,~nP],(7) is a sum 

of two inequivalent irreducible tempered representations. I f  a > 0 and 

uapo >~ (7 reduces, then vapo >4 ~([vp, ~,np], (7) contains a unique square in- 

tegrable subquotient, which we denote by 5(v~po, [up, v'~p], (7). We then 

have 

v'~po >~ ~([vp, vnp], a) = ~(v'~po, [vp, v'~p], e) + L(~,apo, 6([vp, v'~p], a)) 

in the Grothendieck group. 

(ii) Suppose p ~- Po and suppose that v~p )~ a is irreducible whenever a ~ 1 

(a >_ 0). Then vap)~ 5([up, ~'~p], a) reduces if  and only ira E {0, n +  1}. The 

representation p >~ 5([vp, v'~p], a) is a sum of two inequivalent irreducible 

tempered representations. We have 

v '~§ ' p >~ ~([vp, v '~ p], a) = 5([vp, g'~+'p], a) + L(vn+ l p, 5([vp, vn p], a ) ) 

in the Grothendieck group. 
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(iii) I r a  > 0 and v~po )4 5([vp, vnp], a) is irreducible, then v~po >4 5([vp, v~p], a) 

_~-L(v~po, 5([~,p, v '~p], a)). 

Proof." Theorem 2.3 and (2.1) imply 

((~'-"Po | 1 + v " p 0 |  1 | v"p0) )4 ( Z  5([vk+lP'~'nP])| 
k----0 

We read directly from the above formula the Jacquet module of GL-type 

(7.1) 

s.s.(~GL(~p0)4~([,p, ~P] ,  ~))) = " - ~ 0  • ~(['~, ~P] ) |  • 6([,p ~p]) |  

We also see that 

(7.2) s(np) (~C'po )4 5([vp, vnp], (7)) ~ 5([~p, vnp]) @ ~PO >4 a, 

(7.3) 8((n_i)p)(l/V~pO )4 (~([Up, lxnlo], Or)) ~ (~([l./2p, l/np]) @lxc~tO 0 ~ (~(l.]p, or). 

Suppose p ~ Po. 
From (7.1), Theorem 1.1 and Remark 3.5 we obtain that vC~po >4 5([vp, v'~p], a) 

is a multiplicity one representation of length < 2 for (~ > 0. If c~ = 0, then 

the above formula for #*(L,~p0 >4 6([vp, v'~p], a)) implies that the multiplicity of 

Po | 6([vP, v'~P], a) in S(po)(Po )4 5([vp, v'~p],a)) is <: 2. Now (b) of Lemma 3.8 
implies that  we have a multiplicity one representation of length < 2 also for 

o~--0. 
Suppose that v~p0 )4 a reduces for some c~ > 0. Looking at the Jacquet 

modules of GL-type, we can easily conclude that  5([vp, v"p]) )4 5(~,C~po, a) and 
v~po )4 5([vp, v"p], a) have exactly one irreducible factor ~r in common and that 

8GL(71") = b'ap0 X (~([1]p, vnp]) | 0". Note that  we are in the regular situation, i.e. 

all Jacquet modules of the full induced representation v~po x vnp • v'~-lp x 
�9 .. • vp )4 a (= vnp • v n - l p  • "'" • vp • v~po )4 a in R(S))  are multiplicity one 

representations. Because of this, it is very easy to analyze such situations (see 

for example [Roll). The Casselman square integrability criterion (Theorem 4.4.6 

of [C2], see also the sixth section of [T5]) implies that ~r is square integrable. We 

denote ~r by ~(v~po, [vp, v'~p], a). Now, clearly we have v~po >~ 5([vp, vnp], a) = 
~ ( leC~ po , [~ p, l]n p] , a)+L(~,~po, ~ ( [v p, vn p] , a ) ) in R(  S) . For more details regarding 

such regular situations, one can consult [T5]. 
Now suppose that  P0 )4 a reduces. Write P0 ~ a = rl @r2 as a sum of irreducible 

representations. Now the multiplicities of P0 x 5([vp, vnp]) | a in 

)4 sG,(p0 )4 
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and SGL(P 0 • up X u2p x �9 -- • pnp :~ (7) are 1, 2 and 2, respectively. Using Remark 

3.2 we can now conclude the reducibility. 

Now suppose that  u~po >~ a does not reduce. We shall apply Lemma 3.7 

here. Denote T" = 5([up, unp]) | U~po )4 a, P"  = P(,~p), P'" = P(,~p+po) and 

P'  = P(p,p,...a,,po) where p appears n times in the last index. Further denote 
vq+ = unp |174  "" "|174174 and ~_ = unp|174174174174 

Then one sees directly from (1.5) and Theorem 2.3 that  

(7.4) ~+ + < -< (q~)~ | S(~o))(~"). 

Suppose u-'~fio ~ u'~po. Now multiplicities of #+ in 

r(p,p,...,p,po) (uapo )4 5([up, unp]) | a) 

(7.5) r(p,p,...,p,po)(U-"p0 )4 5([up, u=p]) | o) 

s(p,p,.. ,p,~o)(U"p0 )4 ~(bp, u~p], o)) 

are 1, 0, 1 respectively, while the multiplicities of ~_ are 0, 1, 1 respectively. 

One uses (1.3), (1.5), and the structure of Hopf algebra on R to get this (more 

precisely, only the Hopf axiom is necessary). From (7.2), (7.4) and the above 

multiplicities, we can conclude that  the conditions of Lemma 3.7 hold. Therefore 

we have irreducibility in this case. Consider the remaining case: u-~fi0 ~ u~p0, 

i.e. ~ = 0 and P0 - tSo �9 Then ~+ ~ 0_. The multiplicities of 0+ in (7.5) are 

now 1, 1, 2 respectively. From this (and (7.2) and (7.4)), we conclude again 

irreducibility using Lemma 3.7. 

Now suppose that  P0 = P. 

Take ~ > 0, a ~ {0, 1, n + 1}. Then one concludes the irreducibility from 

Lemma 3.7 in the same way as before taking ~-" = 5([up, unp]) | u~p )4 a. We 

now consider the case a = 1. Note that  up x 5(up, a) is irreducible by Proposition 

3.1. One now gets irreducibility for n > 1 from Lemma 3.7 in a similar way as 

before, taking T" = 5([u2p, u'~p]) | up )4 5(up, a) and using (7.3). 

For a = 0, using an argument similar to that  which we used before, we get 

that  p )4 5([up, u'~p], a) is a multiplicity one representation of length < 2. The 

multiplicities of 5([p, u'~p]) | a in SCL(p )4 5([up, unp], a)),  SCL(5([p, u~p]) )4 a), 

and SCL(p • up x . . .  • unp )4 a) are all equal to two (use Theorems 2.3 and 1.1). 

Further, one can easily obtain SGL(p )4 5([up, unp], a)) ~ SGL(5([p, unp]) )4 a) 

again using Theorems 2.3 and 1.1. Remark 3.2 now implies the reducibility. 

Now take a = n + 1. One gets easily that  

,~([~p, u,,+,p], o-) < u '+ ip  ~ ,5([~,p, u"p], o) 
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(use (ii) of Proposition 2.2 to get <, and Theorem 2.3 to get ~ on the level of 

Jacquet modules of GL-type, which together implies the above strict inequal- 

ity). Thus un+lp >4 6([up, u"p], a) is reducible. We only need to check that 

the length is two. Note that the length of SQL(vn+lp >4 ~([vp, l/rip], a)) is three 

(Theorem 1.1). Take an irreducible subquotient ~r of u'~+lp >~ 6([up, u'~p], a) such 

that 6([up, u'~p]) | u'~+lp >4 a < /z*(~r). One can get easily that  the length of 
SGL(~r) is >_ 2. The argument is of similar type as in the proof of Lemma 3.7, al- 

though slightly more complicated. One shows here that there exist two different 
subquotients ~rl | a and ~r2 | a of SGL(Un+lp >~ 6([up, unp], a)) such that 

s(w+, o)) 

for i = 1, 2. Now Remark 3.5 implies that the length of u'~+lp ~ 6([up, unp], a) is 

< 2. This finishes the proof. | 

In the following theorem we shall compute Langlands parameters of irreducible 

subquotients of parabolically induced representations. We shall do it usually in 

one of the following two ways (suppose that IndCpo (a0) is some representation that 
we shall consider). In the simpler case, we shall construct a non-trivial intertwin- 

ing IndpC(T) --+ IndpCo(a0) using (1.2) and (iii) of Proposition 2.2, and Indpa(T) 

will give a Langlands parameter. In the other case we shall have a surjective 

intertwining, say tb: IndGp(~r) --* IndaPo (a0) (again obtained with the help of (1.2) 
and (iii) of Proposition 2.2) and IndCp,(T ') ~ Ind~(Tr), where Indpa,(7 ') will give 

a Langlands parameter if tb is non-trivial on Indp a, (~).  To see this non-triviality, 
it will be enough to prove that 

(7.6) ram ,, (Indapo (ao)) ~ ram,, (Indp a (Tr)) - ram ,, (Indap, (r')) 

for some parabolic subgroup P"  = M " N "  of G. 

This was only a very brief description of the ideas. 

7.2. THEOREM: Let p, Po, n and a be as in Theorem 7.1. 

(i) Suppose p ~ Po. Then uapo >~ s([up, u"p], a) reduces if and only if uapo >4 a 
reduces. I[ uapo )4 ~([yp, unp], a) reduces/or  some a > O, then we have in 

the Grothendieck group 

* o) up, o) 

+ L( p, o)). 
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(ii) 

k f f  a = O, decompose Po >~ a = @i=1 Ti into a sum of irreducible representa- 

tions (k e {1, 2}). Then Po >~ s([up, unp], o) k = ~ i = i  L(up, u2p, . . . ,  unp, "ri). 

Suppose that Po ~ P and suppose that u~p ~ 0 is irreducible for a ~ 1 

(we assume a >_ 0). Then u~p >~ ~([up, u'~p], 0) reduces if and only i f  

a C {0, n + 1}. We have 

un+lp >~ s([up, u~p], 0) =L(up, u~p, . . . ,  u~+lp, 0) 

+ L (up , . . . ,  un-Zp, 6([unp, un+lp]), 0), 

p o)  = 

L(up, u2p, . . . ,  un+lp, p >4 0) @ L(5([p, up]), uZp, . . . ,  u"+lp, 0). 

The first equality holds in the Grothendieck group only. 

(iii) I ra  > 0 and uapo ~ s([up, unp], 0) is irreducible, then uapo >4 s([up, unp], 0) 
= L(u~po, up, u2p, . . . ,  unp, 0). 

Proof'. The reducibility points and lengths follow from Theorem 7.1, using the 

generalized Zelevinsky involution. We only need to prove the description of 

irreducible subquotients (in fact, we shall also prove the redueibilities claimed 

in the theorem, since we shall always find in these cases Langlands parameters 

of two non-isomorphic subquotients). 

Suppose that  p ~ P0. Then we have an epimorphism 

(7.7) u~po x u'~p • u~-lp  x . . .  • up >4 a --+ u~po >~ s([up, unp], o). 

Since yapo x ukp ~- vkp • uapo, we get that L(uapo, unp, un - lp , . . .  ,up, a) 

u~po ~ s([up, u'~p], a) for a > 0. If a = 0 and P0 )~ a is irreducible, we get in a 
similar way L(un p, un- l  p, . . . , up, Po )4 a) < Po )4 s([up, unp], a). We have equality 

here. 

Suppose that  P0 >~ a reduces and write P0 )~ a = T1 @ T2. Then the restriction 
of (7.7) gives intertwinings ~i: unP X u n - l p  X .." X up ~ Vi ~ p ~ S([up, unp], a).  

Suppose that  some ~oi = 0. Since ~01 @ ~o2 is an epimorphism (7.7), we have 

po >4 5([up, < u"p x . . .  x vp r3- . 

Looking at the GL-type Jacquet module, we see that  this cannot happen. Thus 

L(u'~p, u '~- lp , . . . ,  up, ri) <_ PO )4 S([up, u'~p], a) for i = 1, 2. 

Now suppose that  a > 0 and that  uapo )~ a reduces. Restricting (7.7), we get 
an intertwining ~o: u~p • un- lp  x . . .  x up x ~(uapo, a) -~ u~po )4 s([vp, u~p], a). 

Suppose ~o = 0. Then there is an epimorphism u~ p x un- X p x . . . x up )4 L ( ua po, a) 
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-+ v~po >~ S([up, uUp], a). Looking at the GL-type Jacquet modules, we see that  

this is impossible. Thus 

L(.Up, . U - l p , . . . ,  vp, 5(.apo, o')) <_ "aPo x s([-p, .np], a). 

Now suppose that  P0 ~- P. First consider the case a = n + 1. Clearly 

L(.,~+lp, j~ p, .U - lp , .  . . , .p ,  a) <_ .n+lp ~ th([.p, .nfl], O'). 

NOW consider the restriction of (7.7) to 

5([.Up,.U+lp]) x . n - l p  x .U-2p x . "  x . p  >4 a -+ .U+lp >4 ~([.p, .Up],a) .  

Suppose that  it is zero. Then there exists an epimorphism 

L(.Up, .U+lp) x un - lp  • .n--2p X ""  X . p  >4 a -+ .n+lp  >4 S([.p, .Up], (7). 

This implies 

( n ( v - U - l p , . - n p )  + . - U - l p  • . U p +  L( .Up , .U+lp) )x  

( . -u+xp + . u - l . )  x ( .-u+2p + .u-2p) x . . .  • ( .p + . - l p )  | 

~__ (V--n-lp Jr" .n-blp) X .fj([v--np, . - - lp])  | 0". 

Further, we must have 

L ( . - , ~ - l p ,  . -Up)  x . -U+lp  x . . .  x . - l p  | a > . - U - l p  x s([v-Up, . - l p ] )  | a. 

But this cannot hold by Theorem 1.1. Thus L(5([vnp, vu+lp]), . n - X p , . . . . p ,  a) 

< .~+xp ~ ~([.p,.Up], o). 
Now consider the case a = 0. There is an epimorphism 

(7.8) .Up x . n - l p  x . . .  X .2p  X p x . p  >4 a ~ p ~ S([.p, .Up], o). 

Consider the restriction ~: 

.Up X .n - l  p X "" X .2p X L(p,.p) >4 a --+ p >~ ~([.p,.np],a). 

Suppose ~--0. Then p >4 s([.p,.Up],a) <_ .Up x . . .  x .2p x 5([p,.p]) >4 a. Thus 

2p x s ( i . -"p , . - lp ] )  | o _ 

(.-Up + .,~p) x . . .  x ( . -2p  + .2p) x (5( [ . - lp ,  p]) + p x .p  + 5([p, .p]))  | a. 
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This implies 2p x s([u-np, v-lp]) ~_ u-np  x - . .  x u-2p x 5([ ,- lp,  p]). This cannot 

hold. Thus L(unp, u '~- lp , . . . ,  u2p, up, p )~ o) _< p x ~([vp, v~p], 0). Now consider 

the natural epimorphism r u"p x v " - l p  x . . .  x ~,~p x ((p x up)/L(p, up)) ~ a 

(p >4 s([vp, vnp], a) ) / Im~ (note that (p x up)/L(p, up) -~ ~([p, up])). Suppose 

r = 0. Then ~ must be an epimorphism. Therefore 

p ~ ~([up, v'p], a) <_ .~p  •  • v2p • n(p, up) >~ 0. 

On the level of GL-type Jacquet modules, we get 

2p • .~([~,-np, u-lp]) | a _< 

(U-rip + b'np) •  X (/]-2p + tj2p) X (L(p-lp,  p) + u - l p  x p + L(p, up)) | 0". 

Thus 2px.~([u-np, u-lp]) < v--npx ''" X u-2pX (L(u- lp ,  p ) + u - l p x p ) .  Theorem 

1.1 implies that  this is not possible. Thus L(u'~p, v n - l p , . . . ,  v2p, 5([p, up]), a) <_ 

p 
If a ~ (0, 1 , . . . ,  n, n + 1}, then we get directly as in the first part of the proof 

v'~p >~ s([up, u'~p], a) = i ( v " p ,  u'~p, v '~- lp , . . . ,  up, 0). For a = n the statement is 

obvious. Now suppose a = k E {1 , . . . ,  n - 1}. Then we have epimorphisms 

ukp o). 

Using that  ~,kp • s([ukp, v~p]) ~ ~([L, kp, u~p]) • ukp, we get that there exists an 

epimorphism 

unp • y n - l p  X ' ' '  • • ukp • ljkp • l~k-lp • 1]k-2p • . ' .  • up :~ (Y 

ukp u"p], 0). 

This completes the proof. | 

8. Reducibil ity points of  some generalized principal series and 
generalized degenerate principal series representations (cuspidal 
reducibility at 1 /2)  

Suppose that p is an irreducible unitarizable cuspidal representations of 
GL(p, F). Let a be an irreducible cuspidal representation of Sq. Now suppose 
that ul/2p :~ o" reduces. We know from Proposition 4.3 that 5([u-l/2p, ul/2p]) )~ (y 

is a direct sum of two irreducible representations. Since 

8GL(~([U-1/2p, ul/2p]) :~ a) = 2(~([U-1/2p, b'l/2p]) (~ ff -]- ul/2p X vl/2p (~ 0", 
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Frobenius reciprocity (F-R) implies that the irreducible subrepresentations, say 
T1 and T2, satisfy SGL(T1) = 5([U--1/2p, ul/2p]) | a + ul/2p • ul/2p | a and 

SGL(T2) = J([u-V2p,  ul/2p]) | a. We denote ~'1 by 5([u-1/2p, ul/2p]+, a) and ~-2 

by 5([u-1/2 p, uU2 p]_, a). Note that J([u-1/2 p, ul/2 p]+, a) can be characterized 

as the irreducible subquotient of 5([u-U2p, uU2p]) ~ a whose Jacquet module of 

GL-type is reducible. 

8.1. THEOREM: Suppose that p and Po are irreducible unitarizable cuspidal 

representations of GL(p, F)  and GL(po, F) respectively. Let  a be an irreducible 

cuspidal representation of Sq. Assume that ul/2p ~ a reduces. Let  m be a non- 

negative integer and let a �9 R, a > 0. 

(i) Suppose p ~ Po. Then uapo >4 ~([uU2p, uU2+mp],a ) reduces i f  and only 

i f  uapo >~ a reduces. I f  uapo >4 a reduces for some a > 0, then in the 

Grothendieck group, we have 

u~ po ~ s([ul/2 p, vl/2+m p], a) = L(va po, ul/2 p, u3/2 p, . . . , 121/2+m p, (7) 

+ L( vl  /2 p, v3/2 p, . . . , vl  /2+'~ p, J(u~po, a)). 

I f  a = O, write Po >~ a = ~ = 1  ~-~ as a sum of irreducible representations 

(k �9 {1, 2} )  Then 

k 
Po ~ ~([vl/2P, vl/2+'~ P], a) = ~ L(vU2 p, v3/2 p, . . . , vU2+m p, Ti). 

i=l 

(ii) Suppose that  Po ~- P and suppose that yap ~ a is irreducible for a r 1/2 
(we assume a >__ 0). Then uap ~ s([ul/2p, ul/2+mp], a) reduces i f  and only 

i f  ~ C {1/2, m + 3/2}. In the Grothendieck group, we have 

vm+3/2p ~ ~([vl/2p, v,/2+.~p], a) = ~([v'/2p, v3/2+mp], a) 
+ L( vl  /2 p, v3/2 p, . . . , vm-1/2 p, 6([u'~+ t /2 p, u'~+ 3/2 p]), a ), 

vl/2p ~ s([vl/2p, vl/2+'~ p], a) = 

L(ull2 p, vll2 p, u312 p, uhl2 p, . . . , vll2+m p, a) 

+ L(u3/2p, vh /2p , . . . ,  vl/2+mp, J([u-1/2p, vl/2p]_, a)). 

(iii) I r a  > 0 and vapo ~ s([vU2p, vt/2+mp],a) is irreducible, then 

u~ po ~ s([vll2 p, vtl2+m p], a) = L(va po, vll2 p, val2 p, . . . , vll2+'~ p, a). 
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Proof." Theorem 2.3 and (2.2) imply 

= ((L'-'~O | 1 + Vapo | 1) + 1 | Vapo) 

= ~ ~ "~([zJ-m-1/2P, 1/-k-3/2p]) | S([t'l/2p, t,1/2+kp], 6r). 

k=-I  

In part icular ,  

(8.1) 
S.S.(SGL(/(afl0 ~4 ~([121/2p, l]m+l/2p], (7))) = 

lj-a~O • .~([l]-rn-1/2p, p-1/2p]) | (7 + pap0 X S([v-rn-1/2p, p-1/2p]) | (7. 

The  proof  of (i) is just  a simple modification of the proof of (i) of Theorem 7.2. 

Suppose Po ~ P. The  proof  of irreducibility for a 9~ (1/2,  m + 3/2} is anal- 

ogous to the  proof  in the preceding theorem. For c~ = m + 3/2,  one gets 
tha t  s([b'l/2p, vm+3/2fl], (7) and L(lfl/2p,. . . ,  b'm-1/2fl, 5([ttm+l/2p, 1]m+3/2p], 0")) 
are < um+l/2p >~ s([uU2p, u'~+l/2p],(7) using a similar argument  to tha t  used 

earlier. Similarly, one gets tha t  the length is _< 2. For a complete proof  of (ii), it 

remains to consider the case a = 1/2. First, we have an epimorphism 

and fur ther  

vm+l/2px vm-1/2px" " X v3/2px v l /2px  vl/2p>4 a --" vl/2p>~s([vl/2p, vm+l/2p], a). 

Thus 

L(vl/2p, vl/2p, v3/2p, v5/2p,...~ vm+l/2p, a < vl/2p )4 a([vl/2p, vm+l/2p], (7). 

Fur thermore ,  we have an epimorphism 

tt-1/2p• x l]m-1/2p • �9 �9 • /j3/2p X ttl/2p >~ (7 

v-~12p )4 ~([vll2p, vm+~/2p], a). 

Therefore ,  we have an epimorphism 

~m+l/2p X vm- l / 2p  X "'" X V312p X v- l l2p X ~112p ~ (7 

_~ v-1/2 p ~ ~([vl/2 p, v~+ i/2 p], a). 



Vol. 107, 1998 ON REDUCIBILITY OF PARABOLIC INDUCTION 67 

Consider the restriction ~ of the above epimorphism to 

um+~/2p • um-1/2p • . . .  • u3/2p • L(v-] /2p ,  uU2p) ~ a. 

Suppose that ~o is an epimorphism. Then 

(vl/~p-t-u-1/2p) • s ([v-m-1/2p,  v-1/2p]) | a <_ 

( v -m-1 /~p  + vm+l/2p) • (v- '~+l/2p + vm- l l2p)  • . . .  • (v-3/2p + v3/2p) 

• (2L(u-1/2p,  ul/2p) + v-1/2p • u-1/2p) | a. 

This cannot hold (use Theorem 1.1 to see that Z([v -m- I /2p ,  v-I/2p],  u~/2p) | a 
is a subquotient of the left hand side but not of the right hand side; note that 
L(u-1/2p,  vl/2p) = s([v-U2p,  vl/2p])). Thus ~o is not an epimorphism. Therefore 

we have a non-trivial intertwining (moreover, an epimorphism) 

r v'~+l/2p • v ~ - l / 2 p  • . . .  • u3/2p • ~([u-U2p, vl/2p]) >~ a 

--~ ( v - l l 2p  >4 s([vll2p, vm~-ll2p],a))/Im~o. 

Recall that  6([u-1/2 p, ul/2 p]) >4a = 6([u-U2 p, uU2 p]+, a)@6([u-1/2 p, v~/2 p]_, a). 

Suppose that r is nontrivial on 

vm~-l/2p X um-1/2p X ""  • v312p >~ 6([V-~12p, vl /2p]+,e).  

At this point we need information about Jacquet modules of the Langlands 
quotient L(um+l/2p,  . . .  , u3/2p, ~([u-1/2p, vl/2p]+, ~)). Since there exists an epi- 

morphism 
vm+ll2p • . . .  • v31~p >~ ~([v-~12p, vll2p]+, ~) 

L(vm+ll2p,  . . .  , v312p, ~([v-ll2p, ull2p]+, b)), 

there exists an embedding 

L(v  m+l/2 p, . . . , v3/2 p, 6([u-l/~ p, vl/2 p]+, a) ) ~-+ 
(8.2) u - m - U 2 p  • v -m+U2p • . . .  • v-312p >~ ~([v-l l2p,  ul/2p]+,a).  

We have used above the formula for the contragredient in the Langlands classifica- 
tion (see [T5]) and the fact that ~([u-1/2p, vl/2p]+, ~)- ~- ~([v-1/2p, vl/2p]+, a). 

The last isomorphism follows from the fact that  

~([v-1/2p, y 2 p ] + ,  a)- ~ ~([v-~/~A vinCI) ~ a ~ ~([u-1/2p, y 2 p ] )  >, a 

and the fact that SGL(~([v-1/2p, vl/2p]+,~) -) is reducible, which one can con- 

clude from Corollary 4.2.5 of [C2]. Frobenius reciprocity (F-R) and existence of 
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non-trivial intertwining (8.2) imply that v - m - 1 / 2  p | v -m+ l/2 p |  | v-3/2 p | 

(~([tJ-1/2p, ul/2p]+, (7) is a quotient of a suitable Jacquet module of 

L(vm+l/2  p, . . . , va/2 p, 5([v-1/2 p, vl/2 p]+, (7)). 

Further, from SGL(5([v-V2p, t~i/2p]+, (7)) we see that 

v - ' n - 1 / 2 p  | v -rn+l /2p  | . . .  @ V-3/2 fl | b'l/2p | l.'l/2p @ (7 

is also a subquotient of a suitable Jacquet module of the same representation. 

Since we have supposed that ~b is non-trivial on 

vm+l/2 fl • vm-1 /2p  • . . .  • V3/2p >a 5([/~'-1/2p: vl/2p]+, O'), 

1]--m--1/2p | y--mT1/2p |  | 12--3/2fl | v l /2  fl | v l /2p  | (7 must be a subquotient 

of a suitable Jacquet module of v-1 /2p  )~ z([vl/2p, vm+X/2p], (7). From (8.1), we 

see that  this cannot be the case (use the Hopf algebra structure on R, (1.4) and 

(1.6)). This contradiction proves 

L(v312p,v5/2 p, . . . , pm+l/2p,  (~([b,-1/2fl,/21/2fl]_, G)) 

~<I)1/2 p >~ s lffn+l/2 p], (7). 

For a complete proof, we need to prove that the length of 

v l /2p  ~ S([vl/2p, l.'rn+l/2p], (7) 

is two. For this, it is enough to prove that the length is < 2. From (8.1) (and 

Remark 3.5 and Theorem 1.1), we see that the length is < 3. To prove that the 

length is _< 2, it is enough to show that there does not exist a subquotient 7r of 
v l /2p  >4 S([vl/2fl, vm+l/2p], (7) with 

SGL(mr) = v -1 /2p  x ,([/j-1/2p, l j -m-1/2p])  | or. 

Suppose that  such a ~r exists. First, the multiplicity of s([v-1/2p, v- '~-Z/2p]) ~ | 

in 
8GL(1)-m-1/2p • I / -m+l /2p  • . "  • l)rn+l/2 fl >~ 0") 

is one (use Theorems 2.3 and 1.1). Let r denote the irreducible subquotient which 
contains ,([//-1/2p, l)-m-1/2fl])2@(7 a,s a subquotient in its Jacquet module. Then 

r has multiplicity one in b ' -m-1/2p  x l]-m+l/2fl  • ' ' '  x b'm+l/2p :xl (7. Note that  

*([/2-1/2,0, l ) -m-1 /2  p]) 2 ~ O" < 8OL(S([v-m*'l/2 fl, Izm+l/2 fl]) ~ (7) 
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(use T h e o r e m  2.3). Thus  T _< s([v-m-1/2p, vm+U2p]) >4 a. ~ o b e n i u s  reciproci ty 

implies 
S([12-m-1/2p,/]rn+l/2p]) ~ a ~ 8GL(T ). 

Consider 0 = s([v-'n-1/2p, v-3/2p]) x lr. Then  s([v-m-1/2p, v-X/2p]) 2 | a < 

SCL(Vq). Thus  T _< O. But  one gets directly from Theorem 2.3 t ha t  

| o 

This  is a contradict ion.  The  proof  is now complete.  | 

Similarly, we get 

8.2. THEOREM: Let p, po,a,m and a be as in Theorem 8.1. 

(i) Suppose p ~ Po. Then v~po >4 5([vl/2p, vU2+mp] ,a )  reduces if 
and only if v~po >4 a reduces. I f  v~po >~ a reduces for some a > 0, then 
v~ po >4 5([vl /2 p, vl/2+mp], a) contains a unique irreducible square  integrable 
subquotient. We denote this subquotient by ~(v~ po, [vl /2 p, vl/2+m p], a ). In 

the Grothendieck group, we have 

- p0 [ . l n ; ,  o) 

+ L(v~po, ~([vl/2p, vl/2+mp], a)). 

I f  Po >~ a reduces, then Po >~ 5([v1/2p, vl/2+mP], a) is a direct sum of two 

inequivalent irreducible tempered representations. 
(ii) Suppose p ~- Po and suppose that v~p >~ a is irreducible for a ~ 1/2 (we 

assume a >_ 0). Then uap >~ 5([vX/2p, vm+X/2p],cr) reduces if and only if 

a E { 1 / 2 , m  + 3 /2) .  In the Grothendieck group, we have 

v'~+3/2p ~ 5([v1/2p, vm+l/2p], a) = 

5([vl/2p,vm+3/2p], a) + L(vm+3/2p, 5([vl/2p, vm+l/2p], 0")). 

I f  a = 1/2 and m > 0, then there exists a unique irreducible square in- 
tegrable subquotient in v-1/2p ~ 5([vl/2p, v'~+l/2p],a). We denote this 
subquotient by 5([v-1/2 p, vm+l/2 p]+, a). Then, in the Grothendieck group 

we have 
vll2p >~ 5([vl/2p, vm+ll2p], a) -~ 

L(vl/2p, 5([vl/2p, vm+l/2p], a)) + 5([v-1/2p, vm+l/2p]+, a) 

for any m >_ O. 
(iii) I [ a  > 0 and v~po >~ 5([vl/2p, vm+~/2p],a) is irreducible, then 

v~po >4 5([vl/2p, v'~+l/2p], a) = n(vapo, 5([vl/2p, vm+l/2p], a)). | 
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9. On n o n - u n i t a r y  i nduc t i on  of  G L - t y p e  

For an irreducible cuspidal representation p of GL(p, F)  and a positive integer 

rn set 
(~(p, m) = (~([tf(m-1)/2 p, l/(m-1)/2 pD. 

It is easy to see that l/aS(p, m) ~ (~(u~p, m) for a �9 ll~. 

9.1. THEOREM: Let p be an irreducible unitarizable cuspidM representation of  

GL(p, F)  and let ~ be an irreducible cuspidal representation of  Sq. Let m be a 

positive integer and a �9 N. 

(i) I f  p ~ ~, then l / ~ ( p , m )  )4 a is irreducible for any a �9 IR. 

(ii) Suppose that l~l/2p )4 ~Y reduces and that l/ap )4 a is irreducible for any 

a �9 R, [a I r 1/2. Assume that char F = 0. Then uaS(p, m) )4 a reduces i f  

and only i f  

~ ( p ,  m) �9 {~([l/-m+l/2p, ~-1/2p]) ,  ~([~-m+3/2p, ~i/~p]),  

~([~-m+~/~p, ~ / 2  p]), . . . , ~( [~- , /~p ,  ~-~/~p]), 
~([1]1/2p, l/m--1/2 p]) }. 

In other words, we have reducibiBty if  and only i f  

a �9 { - m 1 2 ,  - m 1 2  + 1, - m 1 2  + 2 , . . . ,  m/2} .  

(iii) Suppose that p )4 a reduces and that l/ap )4 a is irreducible for any a �9 •, 

a ~ O. Then l/c*5(p, ra) )4 a reduces if  and only i f  

~ ( p ,  m)  �9 
{(~([V--m+lp, p]), ~([p--m+2p, l/p]), (~((/]-ra+3p, v2p]) , , , , ,  ~([p, l/m--lp])}, 

i.e., i f  and only if  

a �9 { ( - m  + 1 ) / 2 , ( - m +  1 ) / 2 +  1 , ( - m +  1 ) / 2 +  2 , . . . , ( m -  1)/2}. 

(iv) Suppose that up )4 cr reduces and that v~p )4 cr is irreducible for any 

a E N,[a[ r 1. Assume that m >_ 2. Then v~5(p ,m))4cr  reduces i f  

and only i f  

,/',5(p, ~)  e {,~([s"p, ~,-'p]), ,~([,.,-"+'p, p]),,~([,,-'=+~p, ,.,p]),..., 
,~((,,p,l/'~p])}, 
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i.e., if and only if 

a �9 { ( - m -  1 ) / 2 , ( - m -  1)/2 + 1 , ( - m -  1)/2 + 2 , . . . , ( m +  1)/2}. 

Proof: Let n �9 Z, n >_ 0. To shorten notation, in the proof we shall work with 

the representation v#5([p, v '%) ~ a -~ 5([vZp, v~+~p]) ~ a, where fi �9 R and 
n � 9  Z,n > 0 .  Clearly, m = n + l a n d ~ 3 =  ( - m + l ) / 2 + a = - n / 2 + a .  From 

Theorem 2.3 and (1.3) we get 

(9.1) s.s.(S(p) (5([,~p, vZ+~p]) ~ a)) = 
~,~+np | ,~([,,~p, ,~+,,-~p]) >~ o- + , , , -~  | 5([v~+~p, ,,~+np]) >~ o, 

(9.2) 
s.s.(scL(~(yp, ~+~p] ) ,  o) 

n+l  

= ~ 5([S-~+b,  ~-~11 x ~(b~+"-~+b,.~+~)) | o. 
k=0 

In particular, considering members in the sum corresponding to k = n - 1 and 

k = n we get 

(9.3) 
sc~(5([~p, ~+~p]) ~ o) 

> ~([~-~-~#,~-~]) • ~([~+~p, ~+~p]) | ~ + v - ~  • ~([,~+~p, ~+~p]) | o. 

We shall prove (i) - (iv) now. 

(i) Suppose p ~ tS. Then vB+~p ~ v-B f5 for any fl �9 R. We prove (i) by 

induction with respect to n. Assume n _> 1. We shall show irreducibility using 
Lemma 3.7. Denote T" = v - ~  x 6([v~+lp, vB+'~p]) | a, P"  = P((,,+l)p), P'" = 
P(v) and P '  = P(p),+l. Clearly, ~" is irreducible. From (9.3) we know 7" <_ 
scL(5([vflp, v~+~p]) >~ a). By the inductive assumption, both representations on 
the right hand side of (9.1) are irreducible. We shall show now that the conditions 
of Lemma 3.7 are fulfilled. First take ~-'" = v~+np | 5([vflp, v~+n-lp]) ~ a. 

Suppose 

(9.4) (1 | S(p)=)(T"') + (r(p),+, | 1)(T") < S(p),+l (5([u~p, U~+~p]) >~ a). 

Then (9.1) implies (r(p).+, | 1)(~-") _ v-/~t5 | S(p)=(5([v~+lp, v~+np]) >4 a). We 

can see easily that this cannot hold (use the Hopf algebra structure of R, (1.3) 

and (1.5)). Thus (9.4) cannot hold. Analogously we see that (9.4) can not hold if 

we take "r"' = v - ~  | 5([v~+lp, vfl+np]) >4 a. Therefore the conditions of Lemma 
3.7 are satisfied, and 5([v/~p, v/~+np]) >4 a is irreducible by that lemma. 
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(ii) We shall prove reducibilities first. We can easily conclude from (ii) of Propo- 

sition 2.4 that 5([~,I/2p, vv+~/2p]) ~ a reduces for v E Z,v :> 0. In this situation, 

one subquotient is the square integrable representation 5([u~/2p, ~,v+~/~p], a). Us- 

ing Remark 3.2 we shall now prove the reducibility of 5([v-~'-t/2p, u'+l/2p]) ~ a, 

whereu ,  v E Z ,u ,v  > 0. It is enough to prove it in the ca seu  < v (Proposi- 

tion 2.2). One first shows using Theorems 2.3 and 1.1 that the multiplicity of 

5([u1/2p, t~u+l/2p]) x 5([u~/2p, uv+l/2p])|  in the following three representations, 

SGL(U-u-1/2p X t / -u+ l /2p  X U-u+3/2p X . . .  X U ' - t / 2p  X uv+l /2p ~ 0), 

SGL(5(U-u-1/2p, uv+l/2p]) :~ a) and 

,,,.+lnp]) o-)), 

is 1, and 
SGL(~([l]-u-1/2p, Uv+l/2p]) ~1 0) 

0)). 

Now Remark 3.2 implies the reducibility of 5([u-u-1/2p, uv+l/2p]) >~ a. 

We shall now prove by induction the irreducibilities that we claim in (ii) (recall 

p ~ iS). It is enough to consider only the case f l+n/2 > 0 (otherwise, one passes to 

the contragredient). By Proposition 4.2, it is enough to consider only the case of 

/3 + n/2 > 0. Note that under these assumptions we always have u~+'~p 7~ u-~p. 
Suppose that  n _> 1 and that 

r 
{5([u-m+U2p, v- ' /2  p]),5([v-'~+3/2p, ul/2 p]), . . . , 5([~,'/2 p, um-1/2p]) }. 

By the inductive assumption, both representations on the right hand side of (9.1) 

are irreducible. 

First, consider the case fl ~ 0. We shall conclude the irreducibility using 

Lemma 3.7. Denote r" = v-~p • 5([u~+lp, u~+"p]) | a and take P', P", pn, as 
before. Since fl ~ 0 and fl + n/2 > O, T n is irreducible. Now one checks that  the 

conditions of Lemma 3.7 hold in the same way as in the previous application of 

that lemma. Thus 5([v~p, v~+np]) ~ a is irreducible. 

Consider the case fl = 0 now. By Proposition 6.3, it is enough to consider 

only the case n > 2. Denote T" = 5([u-fl-lp, u-~p]) X 5([U~+2p, Ufl+np]) | a = 
5([u-lp, p]) x 5([v2p, v'~p]) | a and take P', P", P'" as before. Note that  7-" is 

irreducible, and r" < SaL(5([uflp, ut~+np]) ~ a) = SGL(5([p,u"p]) >~ a) by (9.3). 

In the same way as before we get from Lemma 3.7 that 5(Iv#p, u#+np]) n a = 

5([p, v'~p]) ~ a is irreducible. This completes the proof of (ii). 
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The proofs of (iii) and (iv) proceed along similar lines, using formulas (9.1) 

and (9.2) (here we do not even have a delicate point as in the proof of (ii), i.e. we 

do not need to use Proposition 6.3). Therefore, we shall not write these proofs 

here. I 

The previous theorem holds in the same form for Zelevinsky segment repre- 

sentations s(p, m) -- ~([v-(m-1)/2p, v(m-1)/2p]) (use the generalized Zelevinsky 

involution). 

10. A s imple  e x a m p l e  of  cuspidal reducibilities 

The group GSp(n,F)  is a semi-direct product of Sp(n,F)  and 

{q-diag(In, M~), A E F• Further, the map q-diag(In, Mn) h ~+ A, where 

e F • and h C Sp(n, F),  defines an epimorphism of GSp(n, F)  onto F • . Using 

this epimorphism, we shall identify characters of GSp(n, F) with characters of 

F • . 
Using ~ ~ Mn, we identify F • with the center of GL(n, F).  If 7r is an irre- 

ducible admissible representation of GL(n, F),  then the central character of ~r is 

denoted by w~. Using the homomorphism det: GL(n, F) --~ F • , the characters 

of GL(n, F) are identified with characters of F • . 

10.1. PROPOSITION: Let p be an irreducible sel[contragredient cuspidal repre- 

sentation of the group GL(p, F) and let a be an irreducible cuspidal representa- 

tion of GSp(q, F). Suppose that a ~g wpa. Let a0 be any irreducible Sp(q, F)-  

subrepresentation of the restriction alSp(q, F). Then p )4 ao reduces into a sum 

of two inequivalent irreducible representations. Further, v~p )~ ao is irreducible 

for any a c ]~• 

Proof: One introduces )~ for groups GSp in a similar way to that  done here for 

symplectic groups (see IT5] or [T6]). The assumptions imply that  p| is regular. 

By (i) of Proposition 3.1 in [T7], the representation ~ p  )~ a of GSp(p -b q, F)  is 

irreducible for any a E I~ (one can see that  easily from Frobenius reciprocity 

if a --- 0, and from Proposition 7.1.3 of [C2] if a ~ 0). Note that  for the 

restrictions we have (uC'p)~ a) lSp(p+q, F)  "~ u~p:~ (alSp(q , F)) as representations 

of Sp(p + q, F).  Proposition 2.7, (iii), in [T3] implies that  uC~p )4 ao is irreducible 

for a EIi( • (one can twist yap )4 a with a suitable character to get a unitary 

central character). Further, p )4 a0 reduces. This follows from the p-adic Clifford 

theory ([GbKn], see also [T3]), since wp r 1F• and wp(p :~ a) ~ p :~ a. This 

reducibility also follows from the fact that  the complementary series have finite 

length. I 
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10.2. Remarks: (i) If a]Sp(q, F)  is a multiplicity one representation, then the 

condition r ~ wpa from the above proposition can be expressed in a simple way 

just in terms of a0 (see Remark 2.6 of [T3], for example). 

(ii) It would be interesting to know if a[Sp(q, F)  is a multiplicity one repre- 

sentation when a is an irreducible admissible representation of GSp(q, F).  This 

seems to be generally expected (for q -- 1 it is well-known that  we always have 

multiplicity one). Let us note that if one proves multiplicity one for irreducible 

tempered representations of GSp(q, F) 's,  this would imply multiplicity one for 

all irreducible admissible representations of GSp(q, F)  (see Lemma 6.2 of [T5]). 

The last proposition directly implies the following result of Shahidi (he assumes 

char F -- 0; our proof requires char F ~ 2). 

10.3. COROLLARY ((Shahidi, [Sh2])): I f  p is an irreducible selfcontragredient 

cuspidal representation of  GL(p ,F)  such that wp ~ 1FX , then p >4 1 reduces into 

a sum of  two inequivalent irreducible representations and uap >~ 1 is irreducible 

for any a E ]~x. 

Shahidi's proof uses a method based on analysis of local Langlands L-functions. 

His method also works in a number of other situations. 

11. A p p l i c a t i o n s  

In this section, we shall list some of the most interesting consequences of theorems 

of Sections 7, 8 and 9. 

Let X be a character of F • Recall that the representation X >4 1 of Sp(1, F)  -- 

SL(2, F)  reduces if and only if X is a character of order two or X -- vq-llF X" 

Further, the representation X >~ 1 of SO(3, F)  reduces if and only if X 2 ---- v:kllF x . 

We have directly now: 

11.1. THEOREM: Let X be a character o f f  x and let n be positive integer. Then 

X >4 1Sp(n,f ) reduces i f  and only i f X  ~ Stsp(n,f) reduces. We have reducibility i f  

and only i f  x 2 ~- 1F• or X = P+(n+l)lF• In the case of  reducibility, we have a 

multiplicity one representation of  length two (the Langlaads parameters of  the 

irreducible subquotients can be seen in Theorems 7.1 and 7.2). 

Proof." Theorems 7.1 and 7.2. | 

11.2. THEOREM: Let X be a character o f f  x. Then X >~ 1SO(2n+I,F) reduces 

i f  and only i f  X >~ Stso(2n+l,f)  reduces. Write X = uC*Xo, where Xo is a unitary 

character of  F • and a E R. We have reducibility i f  and only i f  X2o -- lv• 

and a = -4-1/2, or X = V•215 In the case of  reducibility, we have a 
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multiplicity one representation of length two (the Langlands parameters of the 

irreducible subquotients can be seen in Theorems 8.1 and 8.2). 

Proof: Theorems 8.1 and 8.2. | 

11.3. THEOREM: In this theorem, we only consider representations ofSp(n, F). 

Let X be a character of  F x . Then X1GL(n,F) x 1 is reducible i f  and only i f  

XStGL(,~,F) >4 1 is reducible. Write X = u~Xo, where X0 is a unitary character of 

F x and a E •. We have reducibility i f  and only i f  

X 2 = 1F• and a e { ( - n + l ) / 2 ,  ( - n + l ) / 2 + l ,  ( - n + 1 ) / 2 + 2 , . . . ,  ( n - I ) /2} ,  

or X = 1]+(n+l)/21F • 

Proof: Theorem 9.1 and and the generalized Zelevinsky involution imply the 

theorem. | 

The case of reducibilities of the degenerate principal series representation 

X1GL(n,F ) >~ 1 of Sp(n, F) covered by the last theorem was already settled by 
Kudla and Rallis in [KuRa]. They also described the irreducible subquotients. 

They assume char F = 0. The unramified degenerate principal series case was 

settled before by [Gu]. 

11.4. THEOREM: Assume charF -- O. In this theorem, we only consider repre- 

sentations of SO(2n + 1, F). Let X be a character of F x. Then X1GL(n,F) :~ 1 

reduces i f  and only i f  xS tGL(n ,F )  :~ 1 reduces. Write X = u~Xo, where X0 is a 
unitary character o f F  x and a E IR. We have reducibility i f  and only i f  x~ = 1FX 
and a E { - n / 2 , - n / 2  + 1 , - n / 2  + 2 , . . . , n / 2 } .  

Proof: Theorem 9.1. | 

Part of the description of reducibilities of the degenerate principal series repre- 
sentations considered in the above theorems was already obtained by C. Jantzen 

in [J1] and [J2]. Following the investigation of this paper, he made in [J3] a great 

step forward in understanding reducibility of (generalized) degenerate principal 

series (among others, he obtained all reducibility points and all irreducible sub- 

quotients when induction goes from a maximal parabolic subgroup; [J4] considers 

reducibility points for any parabolic). 

Shahidi proved the following results: 

11.5. THEOREM ((Shahidi, [Sh2])): Assume charF = 0. Let p be an irreducible 

unitarizable cuspidal representation of GL(p, F) where p > 2. Suppose p ~- 
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(then the representation u~p ~ 1 of Sp reduces for some a �9 •; 

Sp(p, F)  or SO(2p + 1)). Then 

(i) 
(ii) 

(iii) 

Sp is either 

v~p x 1 is irreducible for a 6 R\{0, +1/2}. 

p >4 1 is irreducible if  and only i fv+l/2p ~4 1 is reducible. 

The representation p ~ 1 of Sp(p, F) reduces if and only if  the representation 

p >~ 1 of SO(2p + 1, F) is irreducible. 

(iv) Kp  is odd, then the representation p x I of Sp(p, F) is reducible (recall that 

then p >_ 3). 

(v) I f  p = 2, then the representation p ~ 1 of Sp(2, F) reduces if  and only if  

w o 7 ~ lr•  

From this theorem and previous sections, the following results are immediate 
(recall that  6(p, m) = ~([u-(m-1)/2 p, u(m-1)/2 p]) ). 

11.6. THEOREM: In this theorem, we only consider representations of the groups 

Sp(n, F). Assume char F = O. Let p be an irreducible unitarizable cuspidal 

representation of GL(p, F) where p > 1 is odd (for p = 1 see Theorem 11.3). 

Let m be a positive integer and a 6 R. Then u=6(p,m) >~ 1 reduces if  and 

only if  u ~ ( p ,  m) ~ 1 reduces. We have reducibility if  and only if p ~- ~ and 

a �9 { ( - m  + 1 ) / 2 , ( - m  + 1)/2 + 1 , ( - m +  1 ) / 2 + 2 , . . . , ( m -  1)/2}. 

Proof." This is a direct consequence of Proposition 3.5 of [Sh2] (see also Theorem 

11.5 above), and (iii) of Theorem 9.1. I 

Let us note that selfcontragredient irreducible cuspidal representations in the 

above theorem are not very often (see [Ad D . 

11.7. COROLLARY: In this corollary, we only consider representations of 

Sp(n, F)  (chafF = 0). Let 5 be an irreducible essentially square integrable 

representation of. GL(n, F) and assume that n is odd. Suppose that 6 is not a 

twist of  the Steinberg representation by a character o f F  • (for this case see The- 

orem 11.3). Then there exist an irreducible unitarizable cuspidal representation 

p ofGL(p, F ) ,p  _> 2, a positive integer m and a �9 R so that 6 -~ v~6(p, m) (note 

that p and m are odd). Write m = 2k + 1. Then 

(~ >~ 1 -~ u~6(p, 2k + 1) ~ 1 

reduces i f  and only if  p ~ ~ and a E { - k , - k  + 1 , - k  + 2 , . . .  ,k}. 

11.8. THEOREM: In this theorem, we only consider representations of 

SO(2n + 1, F).  Assume eharF  = 0. Let p be an irreducible unitarizable cuspi- 

dal representation of GL(p, F)  where p is odd. Let m be a positive integer and 
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a �9 JR. Then v~6(p, m) ~ 1 reduces if  and only ifv~s(p, m) >4 1 reduces. We have 

reducibility if  and only if  p ~ ~ and a �9 { - m / 2 ,  - m / 2  + 1, - m / 2  + 2 , . . . ,  m /2} .  

Proob This follows from Proposition 3.10 of [Sh2] (see also above Theorem 

11.5), and (ii) of Theorem 9.1. | 

11.9. COROLLARY: In this corollary, we only consider representations of 

SO(2n 4- 1 ,F)  (charF = 0). Let ~ be an irreducible essentially square inte- 

grable representation of GL(n, F) and assume that n is odd. There exist an 

irreducible unitarizable cuspidal representation p of GL(p, F),  a positive integer 

m and a �9 R so that ~ ~- v~5(p,m) (I9 and m are odd). Write m = 2k4- 1. Then 

>~ 1 ~ v~6(p,2k + 1) ~ 1 

reduces if  and only if  p ~- ~ and a �9 { - k  - 1/2, - k  4-1/2, - k  + 3 / 2 , . . . ,  k 4-1/2}. 

11.10. THEOREM: In this theorem, we only consider representations of 

Sp(n, F) 's.  Assume char F = 0. Let p be an irreducible unitarizable cuspidal 

representation of GL(2, F). Let m be a positive integer and a E R. g p ~ ~, 

then ua~(p, m) >~ 1 is irreducible for any a �9 R. Suppose that p ~ ~. Then: 

(i) I f  wp = 1F• , then u ~ ( p , m )  >~ 1 reduces if  and only if  

e { - . q 2 , - . q 2  + + 2 , . . . ,  m/2}. 

(ii) I f  wp ~ 1F• , then va~(p,m) >4 1 reduces i f  and only if  

a e { ( - m  4- 1)/2, ( - m  4- 1)/2 + 1, ( - m  + 1)/2 4- 2 , . . . ,  (m - 1)/2}. 

11.11. THEOREM: In this theorem, we only consider representations of the 

groups SO(2n 4- 1, F) .  Assume char F = 0. Let p be an irreducible unitarizable 

cuspidal representation of GL(2, F).  Let m be a positive integer and a E l~. I f  

p ~ /5, then v~5(p, m) ~ 1 is irreducible for any a E R. Suppose that p -~ ~. 

Then: 
(i) I f  cap 7s 1FX , then v~(~(p, m) >4 1 reduces if  and only if  

o, e - , q2  + 1, -m/2 + 2,..., m/2}. 

(ii) I f  wp = ly•  then v~5(p,m) >~ 1 reduces if  and only if  

a e { ( - m  + 1)/2, ( - m  + 1)/2 4- 1, ( - m  + 1)/2 4- 2 , . . . ,  (m - 1)/2}. 
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11.12. Remark: The last two theorems also hold for Zelevinsky segment 

representations. 

These were some applications. We can apply our general theorems to a number 

of other cases. We shall see only one application more. In the following example, 

we handle the case of the representations XStGL(n,F) N ~r and X1GL(n,F) :~ (r of the 

group Sp(n + 1, F)  where a is an irreducible cuspidal representation of Sp(1, F) .  

Let a be an irreducible cuspidal representation of Sp(1, F ) ( =  SL(2, F)) .  Then 

there exists an irreducible cuspidal representation Z of GSp(1, F)  (=GL(2, F))  so 

that a is a subrepresentation of Z[Sp(1, F).  Let X be a character of F • Here is a 

complete list of the points of reducibility of the representation X )~ a of Sp(2, F):  

(i) X = 1F• ; 

(ii) X is a character of order two which satisfies )/Z ~ I~; 

(iii) X = u+lXo where X0 is a character of order two which satisfies X0Z -~ ~. 

The above reducibility result was proved by J.-L. Waldspurger, and also by 

F. Shahidi (Waldspurger's proof does not require char F = 0). The reducibility 

condition can be expressed purely in terms of cr (without ~). One can find such 

an interpretation in the fifth section of [SAT]. 

We shall write a character X of F x as X = U~Xo, where X0 is unitary and 

a E N. With notation as above, we have: 

11.13. THEOREM: Let n E Z ,n  2 2. In this theorem, we only consider 

representations of Sp(n + 1, F).  Then the representation XIoL(n,F) >4 a reduces 

if  and only i f  xStcL(n,F ) >~ a is reducible. We have reducibility exactly when 

a e { ( - n + l ) / 2 , ( - n + l ) / 2 + 1 , ( - n + l ) / 2 + 2 , . . . , ( n - 1 ) / 2 }  and X 2--1F•  

or a ~ {:k(n + 1)/2} and Xo is a character of  order two which satisfies XoZ ~ Z. 

For a description of the condition X0Z ~ ~ in terms of a, see the fifth section 

of [SAT]. 

In closing, let us say that  using results about reducibilities of p )~ 1 when p is a 

cuspidal irreducible representation of a general linear group, proved by Shahidi 

in [Sh2], and using only Propositions 4.1-4.4, one can prove the results of Shahidi 

in [Sh2] about reducibilities of ~ >~ 1 when (f is a (non-cuspidal) irreducible square 

integrable representation. Shahidi's proof of this step is based on L-functions. 

Propositions 4.1-4.4 provide an alternative proof of this step. 
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12. G L - d u a l i t y  

Let r be an admissible representation of GL(n, F). If we consider the represen- 

tation 7r ~ 1 of Sp(n, F) (resp. of SO(2n + 1, F)),  then we shall denote it by 

71" >qSp(n,F) 1 (resp. by 7r :~SO(2n+I,F) 1) in this section. 
Shahidi proved the following duality (Theorem 1.2 of [Sh2]): if ~ ~ 1F• 

is a selfcontragredient irreducible square integrable representation of GL(n, F),  

then 5 )qSp(n,F) 1 reduces if and only if 5 ~SO(2~+I,F) 1 is irreducible (charF = 
0). Propositions 4.1 - 4.4 and Shahidi's results about cuspidal reducibilities 
(Theorem 11.5) imply this duality (for selfcontragredient non-cuspidal irreducible 

square integrable representations). Shahidi's duality can be extended to the non- 

unitary case (i.e. to essentially square integrable representations) in the following 

way: 

12.1. THEOREM: Assume charF  = 0. Let ~ be an irreducible square integrable 

representation of GL(n,F)  and a E ]~. Write ~ = 5(p,m), where p is an irre- 

ducible tmitarizable cuspidal representation of a general linear group and m is a 

positive integer. 
(i) Suppose that ~ ~g StGL(,~,F). If p ~ ~ or 

r ((-m)/2, ( -m + 1)/2, ( -m + 2)/2, ( -m + 3)/2,. . . ,  (,~ - 1)/2, m/2}, 

then both v ~  >4sp(~,f ) 1 and v ~  ~SO(2n+l,F) 1 are irreducible. If 

p ~- ~ and 

c { ( -m)/2 ,  ( - .~  + 1)/2, ( - m  + 2)/2, ( - .~  + 3) /2 , . . . ,  (.~ - 1)/2, m/2} 

then v ~  >qSp(n,F) 1 reduces if and only if va8 >~SO(2nWl,F) 1 is irreducible 
(and conversely). 

(ii) Suppose n > 2. If 

a • ( ( - n - 1 ) / 2 ,  ( -n ) /2 ,  ( - n + l ) / 2 , ( - n + 2 ) / 2 , . . . ,  (n -1 ) /2 ,  n/2,(n+l) /2}  

then both vaStGL(n,F) ~Sp(n,F) 1 and vaStGL(n,F) )4SO(2n_I_I,F) 1 are irre- 
ducible. If 

a e { ( - n -  1)/2, ( -n ) /2 ,  ( - n +  1)/2 , ( -n+2)/2 , . . . ,  ( n -  1)/2, n/2,(n+ 1)/2} 

then vaStGL(n,F) )qSp(n,f) 1 reduces if and only ifv~StGL(,~,F) )qSO(2n+l,f) 1 
is irreducible. 

(iii) If  a E {+1/2,4-1}, then Vale • :~Sp(1,f) 1 reduces if and only if 

1/ale • )4SO(3,F ) 1 is irreducible. Both ValE • )4Sp(1,F ) 1 and ValE x )~SO(3,F) 1 
are irreducible for a E R\{=I=l/2, +1}. 
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12.2. Remarks: (i) The particular case of c~ = 0 and p ~ t5 is Shahidi's duality. 

(ii) The duality from the above theorem also holds for Zelevinsky segment 

representations. One needs to replace the irreducible square integrable represen- 

tation 5(p, m) with the unitarizable Zelevinsky segment representation s(p, m) = 

fi([ll--(rn-1)/2p, l/(m-1)/2p]), and StGL(n,F ) with 1GL(n,F ) (a special case of this 

duality is a duality for degenerate principal series representations). 

13. T h e  case o f  non-gener ic  cuspidal  reducibilities 

In this section we shall study reducibility of parabolically induced representations 

in the setting of non-generic cuspidal (1/2)Z-reducibilities. In particular, we shall 

pay special attention to some new square integrable representations which are 

specific for the non-generic cuspidal reducibilities. Our method applies in this 

setting without essential changes. This is the reason why we shall supply only 

brief proofs in this section. We shall rely often on our paper [T7] (there one can 

find the definition of regular representations, and more details regarding them). 

We shall start this section by considering cases similar to those considered 

in the seventh and eighth sections. First, we recall a new regular irreducible 

square integrable representations related to the non-generic cuspidal reducibil- 

ities, which have some similarities to the square integrable representations in- 

troduced in Proposition 2.4 (they also have some significant differences). One 

of the main similarities with the square integrable representations introduced in 

Proposition 2.4 is that all their Jacquet modules are also irreducible. 

Suppose that  p is an irreducible unitarizable cuspidal representation of 

GL(p, F)  and a a similar representation of Sq. Suppose that ~ p  :~ a reduces for 

some fl > 0. Take k E Z which satisfies 0 < ~ - k < ft. Then the representation 
~,Z-k • vZ-k+l • . . .  • v~p ~ a contains a unique irreducible subrepresentation, 

which we denote by 

(regular) square integrable representation which Then ~([L,#-ep, ~p] ,  a) is a 

satisfies 
k+l 

i----0 

(see the seventh section of [T7] for more details, and for proofs). 

If fl > 1, then we can take k > 1 such that 0 < / ~ - k .  Now the square integrable 
representations 5([v~-kp, v~p], a) are not covered by Proposition 2.4 (they are of 

different type than the square integrable representations considered there). 
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13.1. PROPOSITION: Let p and Po be irreducible unitarizable cuspidal represen- 
tations of GL(p, F) and GL(po, F) respectively, let a be an irreducible cuspidal 
representation of  Sq and let fl E (1/2)Z be positive (i.e. > 0). Suppose that 
vX3 p >4 a reduces, and that u~p >4 a is irreducible for any a E R\{:t:j3}. Choose 

k, I E Z such that O <13 - k <_ fl <_ fl + l. Let a E IR. Then: 
(i) I f  p ~g Po, then vapo x 6([pep, u~+~p], a) (resp. vapo >4 6([vZ-kp, vflp], a)) 

reduces, i f  and only i f  v~po >4 a reduces. 
(ii) v~p >4 6([v~p, v~+lp], a) reduces f f  and only lea E {+(fl - 1), +(fl + l + 1)}. 

(iii) v~p >4 6([v~-kp, vZp], a) reduces f fand  only i ra  E {=k(fl - k - 1), +(fl + 1)}. 

Proof'. It is enough to prove the proposition in the case a _> 0. Write 

.*( .~po * a([,.ep,.e+~p], ~)) 

= (l| + v~po | 1 + u-~/50 | 1) 
(13.1) l 

>4 ( ~ a([~,e+,+~p,/%1) | a([/p,/+Jp}, o) ). 
j=-I 

We shall proceed now in the same way as in Proposition 7.1. From (13.1) we get 

(13.2) 
s .s . ( ,a~( ,&,o >4 a ( [ , 2 p , , , e % ] ,  o))) 

= ~'-~'~o • a(b 'ep, , ,e+~d)  | o + ~,~ x a([,,ep,,,e+,p)) | a, 

(13.3) s(zp)(~"po >4 ~(b'~p, ~e+lp], G)) > ~([~,ep,/+~p]) | ~'"po >4 o, 

(13.4) s((z-1)p)(vapo >4 6([v/3 P, v~+lP], a)) > 6([v~+lp, vf~+lp]) | >4 6(vf~ p, a). 

We shall analyze first the case P0 ~ P- The length of (13.2) is then 2. 

Suppose that  v~po >4 a is irreducible. If v~po ~ v - ~ o ,  then (13.3) and (13.2) 

imply the irreducibility of v~po >4 6([v~p, v~+lp], a) (this follows from the tran- 

sitivity of Jacquet modules; Lemma 3.7). Similarly one sees the irreducibility of 

vapo >4 6([vZp, vZ+lp], ~r) for po ~ /5o (one then needs to look at multiplicities, 

and use (13.2) and (13.3) again). 

Assume now that  v~po x a reduces. If a > 0, then we are in the regu- 

lar situation. Now (13.2) and Theorem 7.4 of [TT] imply the reducibility of 

u~po >4 6([u#p, u~+lp], a). Suppose a = 0. Write P0 >4 a = T1 @ 7"2 where Ti are ir- 

reducible. The multiplicity of P0 x 6([yap, v#+lp])| in SGb(6([uap, u#+'p]) >4 T1), 

SGL(P 0 >4 6([u~p,v~+lp],a)) and SGL(Po x vflp x u~+lp x . . .  x vfl+lp >4 a) 
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is 1, 2 and 2, respectively. Remark 3.2 now implies the reducibility of 

p0 ~ ~([-zp, .z+zp], ~). 
We shall now prove (ii). We shall use formulas (13.2), (13.3) and (13.4) where 

we shall take P0 to be p. 

If a = /3  + l + 1, then we are in the regular situation. Now (13.2) and Theorem 

6.3 of IT7] imply the reducibility. If/3 e {1/2, 1} and a e {4-(/3 - 1)}, then (ii) 

of Theorems 7.1 and 8.1 imply the reducibility. Suppose/3 > 1. Then again we 

are in the regular situation, and (13.2) and Proposition 7.2 of [TT] imply the 

reducibility. 

It remains to prove the irreducibility of u~p :~ 5([u~p, u~+Zp], a) claimed in the 

proposition. Suppose a r {4-(/3 - 1), 4-(/3 + l + 1)}. This assumption implies 

that (13.2) has length 2. First consider the case when a r {0,/3}. Then (13.2) 

and (13.3) imply the irreducibility (Lemma 3.7). Suppose a =/3.  Now (13.2), 

(13.4) and Proposition 5.1 imply the irreducibility. If a = 0, then one gets the 

irreducibility in the same way as in the case P0 ~ P (and a = 0; one needs to 

consider multiplicities). 

Up to now, we have proved the proposition for representations 

L,~p0 ~ 5([u~p, u~+tp], a). Now we shall prove the proposition for representations 
uapo N 5([z/~-kp, ~flp], a). It is enough to consider/3 > 3/2. 

First we have 

~*(~"~po ~ ,~([~,~-kp, ~,~p],,~)) 
= (l| + t,'~ | 1 + ~,-a/~ o | 1) 

(13.5) k+l 

( ~ ~([.~-~p, .z-,p]) | ~([.~-,+ip, .~p], ~) ). 
i=0 

This implies 

(13.6) 
s.s.(sG~(.,~po, ~([~,p-kp, ~,ep], o))) 

= ~'-'~o x ~([~-kp, ~,~p]) r ,~ + ,'~po x s([ue-kp, ~,~p]) | ~, 

(13.7) S(kp) (~apo >a 5([t/~-kp, ~f~p], a)) ~ ~([vB-kp, ~ p ] )  @ ~aP0 :~ a, 

(13.8) 
S ( ( k _ i ) p ) ( I /a po  N (~ ( [ l/fl - k p , Pf~ p ] , Or)) ~__ ..q ( [ l l~ - k p , pf l - lp ] )  @ l /a  po ~ (~ ( l/fl p , 0"). 

The proof now proceeds similarly to the previous case (we shall mainly do 
necessary modifications). 
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Consider first the case P0 ~ P. The length of (13.6) is 2. 

Suppose that  v~po >~ a is irreducible. If v~p0 ~ v-~fh0, then (13.6) and 

(13.7) imply the irreducibility. One gets irreducibility for P0 ~ P0 considering 

multiplicities. 

Suppose now that  ~ P 0  >~ a reduces. For a > 0 we are in the regular situa- 

tion. Then (13.6) and (i) of Theorem 7.4 in [T7] imply the reducibility. Sup- 

pose a = 0. Write P0 >4 a = Zl @ ~-2 where ~-i are irreducible. Multiplicity of 

Pox ~([v~-kp, ~p] )  |  in SGL(S([~-kp,/fl~p]) :~ q-l), SGL(P0 :~ ~([/z~-kp,/~p], Cr)) 
and SGL(P0 • u f i - k p  • u f l - k + l p  • . . .  X v,~p )<1 a) is 1, 2 and 2, respectively. 

Reducibility now follows from Remark 3.2. 

We shall now prove (iii). In the formulas (13.6), (13.7) and (13.8) we now take 

P0 to be p. For a -- fi + 1 we are in the regular situation. Proposition 7.2 of 

[T7] and (13.6) imply the reducibility. We consider now the case a -- fl - k - 1. 

If fl - k - 1 > 0, then we are again in the regular situation, and Lemma 7.1 

of [T7] and (13.6) again imply the reducibility. Suppose fi - k - 1 < 0. Then 

f i - k - 1  e {0, -1/2}.  First consider the c a s e / 3 - k - 1  = 0, i.e. ~ - -  k + l .  

Observe that  

S.S . (SGL(5( [p ,  = • | O. 

i=--1 

Now multiplicity of ~([p, v~p]) | a in SGL(5([p, v~p]) >4 a), SGL(P ~ 5([vp, v~p], a)) 

and SGL(P • v '~ -kp  • 1J~-k+lp • "'" • 1]~P :~ a)  is 1, 2, and 2, respectively. This 

proves the reducibility of p ~ 5([vp, v~p],a). Consider now the case 
fl - k - 1 = -1 /2 ,  i.e. fi = k + 1/2. Multiplicity of s([~-l/2p, vk+l/2p]) | a in 
SGL(~([v-1/2p, v'k+l/2p]) :~ a), SGL(~-I/2p >~ 5([vl/2p, vk+l/2p],a)) and 

SGL(V-1/2p • ~([~1/2p, pk+l/2p]) :~ or) is 1 in all cases. For the reducibility, it 

is enough to prove 

(13.9) SGL(V-l/2p ~ 6([vl/2p, vk+l/2p],a)) ~ SGL(S([V-1/2p, Vk+ll2p]) >~ a). 

This follows from the fact that  the multiplicity of vl/2p ~ ~([ul/2p, vk+l/2p]) | a 
in the left-hand side of (13.9) is 1, and it is 0 in the right hand side. 

It remains to prove the irreducibility claimed in (iii). Suppose a 

{ •  k -  1),~=(j3+ 1)}. Now (13.6) has length 2. I f a  r {0,~}, then (13.6) and 

(13.7) imply the irreducibility. In the case a = fl, (13.6), (13.8) and Proposition 

5.1 imply the irreducibility. In the case a -- 0, the irreducibility is obtained by 

considering multiplicities. | 
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13.2. THEOREM: Let A be a segment in irreducible cuspidal representations of 
general linear groups, and let a be an irreducible cuspidal representation of Sq. 
Suppose that (7~(U2)z) holds in general and suppose cha fF  -- 0. Then 5(A ) >~ a 
reduces, if and only if p )~ a reduces for some p E A. 

Proof: Suppose that p )~ a is irreducible for all p E A. Now we shall show the 

irreducibility of 5(A) )~ a. 
First we consider the case when 5(A) is unitary. Now proofs of Propositions 

4.1 and 4.2 imply the irreducibility (in the proof of Proposition 4.1 we used only 

that  ff )~ a is irreducible for ff E [L,-m-W2p, vm+l/2p]; similarly we needed in the 

proof of Proposition 4.2 only that p' )4 a is irreducible for p' E [u-np, ~,'~p]). 

Suppose now that 5(A) is not unitarizable. Write A = [v~p, v~+'~p], where 

/3 E R, n E Z, n > 0, and p is a representation of GL(p, F). The irreducibility is 

obvious for n -~ 0. Suppose n > 1, and suppose that we have proved irreducibility 

for lower n. Now we get the irreducibility in the same way as in the proof of 

Theorem 9.1 (using formulas (9.1) and (9.2), and Proposition 6.3). 

Suppose that/3 E (1/2)Z, /3 > 0, and v~p :~ a reduces. Let k, l E Z, k > 0, l _> 0 

such that I f / -  k t _< /3 + l (the last condition is equivalent to k < 2/3 + l). To 
complete the proof of the theorem, it is enough to prove that 5([v~-kp, v~+lp]) )~ a 

reduces. If k = 0 and f~ > 0, then Theorem 6.3 of IT7] implies the reducibility. 

If k = 0 and/3 = 0, then (iii) of Theorem 9.1 implies the reducibility. Therefore, 

we shall suppose k _> 1. 

Write 
(13.10) 

o))) 
k 

.( ~ 5([u-f~+l+ip, u-~+kp]) • 5([y~-ip,./3-1p])) • 5([i]f~p, UC~+/p]) |  
i=0 

o)  

(13:11) k+l+l 
= • | 

i=0 

S.S.(SGL((~([I/~-kp, tf l~-lp]) )~ ~([I//~p,//f~+lp]) :~ 0 ) )  

-~ (~([t~-fl'l-lTip, 12-fl+kp]) X (~([ 

(13.12)  

X(~([~'-#-'+3P'~'-#P])X~([~fl+'-j+iP'~B+'P])) |  
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Note that 

o < v -lp]) dr, 

Suppose that /~ - k > O. Then the multiplicity of ~([v~-~p, vO+~p]) | a in 

(13.10), (13.11) and (13.12) is 1 in all cases. Therefore, 5([v~-~p, v~+~p]) >~ dr and 

5([u~-kp, v~-~p]) >~ 5([u~p, v~+tp],a) have a common irreducible subquotient. 

Now to prove the reducibility of 5([v~-kp, v~+lp]) ~ dr, it is enough to prove 

(13.13) ~([vZ-kp, v~+lp]) >~ dr ~Z 5([v~-kp, v~-lp]) >4 5([v~p, v~+Ip], dr). 

This follows from the fact that ~([v-~-Zp, v-~+kp])| is a subquotient of (13.11), 

but not of (13.10). 

Suppose now that /~  - k <: 0. We shall proceed in a similar way as before. 

If fl C (1/2) + E (resp. /3 e Z), then the multiplicity of 5([vl/2p, v-~+kp]) x 
(~([vl/2p,/fl3+/p]) | (resp. 5([vp, v-~+kp]) • S([p, v/~+/p])| in (13.10), (13.11) 

and (13.12) is 1 (resp. 2) in all cases. To prove the reducibility, it is enough to 

show (13.13). 
We introduced earlier the condit ion/3-k >_ - / ~ - l  (see above). I f /~-k  > - H - l ,  

then 5([v-~-lp, v-~+kp]) |  is a subquotient of (13.11), but  not of (13.10). Thus 

(13.13) holds. I f / ~ -  k = -/~ - l, then the multiplicity of 5([v-~-lp, u-~+kp]) | dr 

in (13.11) is 2, and in (13.10) it is 1. This proves again (13.13). The proof is now 

complete. | 

We can also compute Langlands parameters of irreducible subquotients of rep- 
resentations studied in Proposition 13.1 in a similar way as we did in the seventh 

and eighth sections. Instead of doing these computations, we shall compute re- 
ducibility points in one essentially new situation. Namely, we shall deal with the 

representation parabolically induced by a regular irreducible square integrable 
representation (which is related to a non-generic cuspidal reducibility), where 

Jacquet modules of the inducing representation are not always irreducible. The 
wider family of such square integrable representations was introduced in the 

seventh section of [T7]. We shall first briefly recall this family. 

Let p be an irreducible unitarizable cuspidal representation of GL(p, F)  and let 

dr be an irreducible cuspidal representation of Sq. Suppose that vZp >4 a reduces 

for some j3 > 0. Take k, l E Z such that 0 < f l - k  </3 < t3-t-l. The representation 

(v ~-Fl X v/~+l-I X .. .  X v/~-F2p X v~+Ip) • (V/~-k X V ~-k-F1 X ' ' "  X V/~--lp X V/~R) ~ O" 
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contains a unique irreducible subrepresentation, which we denote by 

This subrepresentation is a regular square integrable representation and we have 

(13.14) 
= L(ue-kp,ue-k+lp, . . . ,  ue-=p, ue-*p, a([uep, u/J+Ip])) | a. 

We have considered already the above representations if k = 0 or l = 0 in 

Proposition 13.1. If/3 > 1, then we can find k _> 1 such that 0 < /~  - k. Take 

any l > 1. In that case there will exist Jacquet modules of a([uZ-kp, u~+lp],a) 
which are reducible (already for some maximal parabolic subgroups). In the 

following lemma we shall deal with the reducibility of a parabolically induced 

representation related to one of representations a([uZ-kp, uZ+Ip], a). In our case 

k = l = 1 and fl = 3. Such an example of a pair p and cr exists in the case of 

symplectic groups by C. Mceglin's results. 

The example considered in the following lemma is enough to illustrate the 

method in the case of general 5([v~-kp, 1]~+lp], o). 

13.3. LEMMA: Take irreducible unitarizable cuspidal representations p and Po 
of groups GL(p, F)  and GL(po, F) respectively, and take an irreducible cuspidal 
representation ~ of Sq. Suppose that u3p >~ G reduces, and that u~p >~ a is 
irreducible for any a E R\{• Let a G ~. Then: 

(i) If  p ~ po, then uapo >~ ~([/22p, v4p], 0) reduces, if and only if uapo >~ a 

reduces. 
(ii) u~p >4 J([t, ap, u4p], a) reduces if and only ira E {:kl, • • 

Prook It is not hard to see from (13.14) that 

. %  o)) =1 | a([.2p, o) 

+ v2p • ~,4p | 5(~,3p, o') + L(u2p, 5([uap, u4p])) | a 

using (13.14). Now from 

(1 | u'~po+u~po | 1 + u-'~o | 1) >~/.t*(a([u2p, u4p], or)) 

we get 

(13.15) 
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(13.16) 8(3p ) (papo ~ 5([u2p,/24p], a)) > L(tflp, 5([v3p,/24p])) | yap0 :~ (T. 

One proves now (i) from (13.15) and (13.16) in a similar way that we proved 

(i) of Proposition 13.1. Suppose p0 ~ p. If yap0 ~ (yap0) ~, and yap0 >4 a is irre- 
ducible, (13.15) and (13.16) imply the irreducibility of the induced representation. 

If P0 ~ (P0) ~ and P0 ~ a is irreducible, we get the irreducibility from (13.15) and 

(13.16) considering multiplicities. If v~P0 >4 a reduces and a # 0, then Theorem 
7.4 of [T7] implies the reducibility of the induced representation. Suppose that  

P0 >4 a reduces. Write P0 >4 a = 71 | ~-2 as a sum of irreducible subrepresentations. 
Using the representations L(//2p, 5([/23p,/24p])) >q T1 and L(/y2p, 5([v3p,/24p])) • 

Po >4 a, one can easily show the reducibility of Pox ~([v2p, vnp],a). For this 

one needs to compute the multiplicity of Po • L(/22P, (~([/23p,/24p])) | a in the 

corresponding Jacquet module of each of the last three representations. That 

multiplicities are 1, 2, 2 respectively. This implies the reducibility. 

Suppose now a E JR\{• :E3,-4-5}. If a # 0, then the irreducibility of the 

representation v~p >4 5([/22p, v4p], a) follows directly from (13.15) and (13.16). If 

a = 0, then the irreducibility follows considering multiplicities. 

For a -- 1 or 5, the reducibility follows from Proposition 7.2 of [T7] (in 
the first case use the fact that L(/2p,/22p, 5([/23p,/24p])) is a subquotient of 
/2p • L(/22p, 5([/23p,/24p])), and in the second case that L(/22p, 5([/23p,/25p])) is a 

subquotient of L(v2p, ~([/23p,/24p])) • v5p; the last fact follows easily from the 

Bernstein-Zelevinsky theory). 

It remains to show the reducibility of/23p >4 5([v2p,/24p], a). First note 

(13.17) /23p ~ 5([/22p,/24p], or) _</23p x/22p >4 5([u3p,/24p], a), 

(13.18) 5([/22//3p]) >~ 5([/23p, b,4p], if) < v3p • /.,2 ;~ 5([/23p,/24p], (7). 

Further compute 

S.s.(SGL(/23p :~ 5([/22p,/24p], cr))) 
(13.19) 

= v3p • L(v2p,5([/23p,/24p])) | a + v-3p • L(v2p, 5([v3p,/24p])) | a, 

(13.2o) 
s.s.(scL(5([/22,/23v] ) 5([/2%,/24v1 ' o) ) )  = s([/22v • | o 

+/2-3p • /22p X 5([u3p,/24p]) | cr + 5([u-3p X /2-2p]) • (~([/23p,/24p]) | 0", 

(13.21) 
s.s.(scL(/23p • 09)) 

---- /22p • /23p • 5([/23p,/]4p]) | O" "4-/22p X /2-3p X (~([v3p,/24p]) | O" 

+/~-2p • /23p • 5([/23p, v4p]) | a +/2-2p X /2-3p X 5([/23p, v-4p]) | or. 
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Prom the te rm /2-3p • L(/22fl,(~([/23p,/24fl]))| Cr in (13.19), and terms 
/22p x /2-3p x ~([v3p,/24p])| (7 in (13.20) and (13.21) we see that 

/23p :~ 5([v2p, v4p], a) and 5([/22,/23p]) :~ 5([v3p,/24p], a) must have a common 

irreducible subquotient. For the reducibility of v3p >4 ~([/2~p,/24p],(7) it is 

enough to show 

(13.22) /23p ~ (~([/22p,/24/0], (7) ~ ,5([//2,/23p]) )4 (~([/]3p,/24p], (7). 

Prom (13.19) and (13.20) we see that for this it is enough to show 

(13.23) v3p x L(/22p, ~([/23p,/24p])) :~ s([/22p x/23p]) x 6([/23p, v4p]). 

The eleventh section of [Z] implies that right hand side of (13.23) is irreducible 
(more precisely, L(/23p,/22p, 5([v3p,/2tp])) = ~([/22p,/23p]) x 5([/23p,/2ap])). There- 

fore, it is enough to prove that the left hand side is reducible. It is not hard to 

compute (using the eleventh section of [Z]) that 

/23p x L(/22 p, (~([/23 p, v4p])) =L(/23 p, v2 p, (f([/23p,/24p1)) 

+ L((~[/22p, v3p]), (~([/23p, v4p])). 

The proof of the lemma is now complete. | 

13.4. Remark: The above lemma suggests that it might be more convenient to 
denote ~([/2~-kp,/2~+lp], (7) by 

~( L(v/3-k p, v~-k+l p, . . . , v~-2 p, vB-l p, ~([v~ p, uB+lp])), a) 

for some purposes. 
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